scholarly journals On Finite Groups with an Automorphism of Prime Order Whose Fixed Points Have Bounded Engel Sinks

Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

AbstractA left Engel sink of an elementgof a groupGis a set$${\mathscr {E}}(g)$$E(g)such that for every$$x\in G$$x∈Gall sufficiently long commutators$$[...[[x,g],g],\dots ,g]$$[...[[x,g],g],⋯,g]belong to$${\mathscr {E}}(g)$$E(g). (Thus,gis a left Engel element precisely when we can choose$${\mathscr {E}}(g)=\{ 1\}$$E(g)={1}.) We prove that if a finite groupGadmits an automorphism$$\varphi $$φof prime order coprime to |G| such that for some positive integermevery element of the centralizer$$C_G(\varphi )$$CG(φ)has a left Engel sink of cardinality at mostm, then the index of the second Fitting subgroup$$F_2(G)$$F2(G)is bounded in terms ofm. A right Engel sink of an elementgof a groupGis a set$${\mathscr {R}}(g)$$R(g)such that for every$$x\in G$$x∈Gall sufficiently long commutators$$[\ldots [[g,x],x],\dots ,x]$$[…[[g,x],x],⋯,x]belong to$${\mathscr {R}}(g)$$R(g). (Thus,gis a right Engel element precisely when we can choose$${\mathscr {R}}(g)=\{ 1\}$$R(g)={1}.) We prove that if a finite groupGadmits an automorphism$$\varphi $$φof prime order coprime to |G| such that for some positive integermevery element of the centralizer$$C_G(\varphi )$$CG(φ)has a right Engel sink of cardinality at mostm, then the index of the Fitting subgroup$$F_1(G)$$F1(G)is bounded in terms ofm.

2019 ◽  
Vol 109 (3) ◽  
pp. 340-350
Author(s):  
E. I. KHUKHRO ◽  
P. SHUMYATSKY ◽  
G. TRAUSTASON

AbstractLet $g$ be an element of a finite group $G$ and let $R_{n}(g)$ be the subgroup generated by all the right Engel values $[g,_{n}x]$ over $x\in G$. In the case when $G$ is soluble we prove that if, for some $n$, the Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the $(k+1)$th Fitting subgroup $F_{k+1}(G)$. For nonsoluble $G$, it is proved that if, for some $n$, the generalized Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the generalized Fitting subgroup $F_{f(k,m)}^{\ast }(G)$ with $f(k,m)$ depending only on $k$ and $m$, where $|g|$ is the product of $m$ primes counting multiplicities. It is also proved that if, for some $n$, the nonsoluble length of $R_{n}(g)$ is equal to $k$, then $g$ belongs to a normal subgroup whose nonsoluble length is bounded in terms of $k$ and $m$. Earlier, similar generalizations of Baer’s theorem (which states that an Engel element of a finite group belongs to the Fitting subgroup) were obtained by the first two authors in terms of left Engel-type subgroups.


2019 ◽  
Vol 22 (3) ◽  
pp. 529-544
Author(s):  
Lijian An

Abstract A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer {w\geq 3} , a quasi-antichain of width w is denoted by {\mathcal{M}_{w}} . In [B. Brewster, P. Hauck and E. Wilcox, Quasi-antichain Chermak–Delgado lattice of finite groups, Arch. Math. 103 2014, 4, 301–311], it is proved that {\mathcal{M}_{w}} can be the Chermak–Delgado lattice of a finite group if and only if {w=1+p^{a}} for some positive integer a and some prime p. Let t be the number of abelian atoms in {\mathcal{CD}(G)} . In this paper, we completely answer the following question: which values of t are possible in quasi-antichain Chermak–Delgado lattices?


2009 ◽  
Vol 87 (3) ◽  
pp. 329-357 ◽  
Author(s):  
TIMOTHY C. BURNESS ◽  
STUART D. SCOTT

AbstractLet G be a finite group and let δ(G) be the number of prime order subgroups of G. We determine the groups G with the property δ(G)≥∣G∣/2−1, extending earlier work of C. T. C. Wall, and we use our classification to obtain new results on the generation of near-rings by units of prime order.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


2020 ◽  
Vol 27 (04) ◽  
pp. 661-668
Author(s):  
A.M. Elkholy ◽  
M.H. Abd-Ellatif

Let G be a finite group and H a subgroup of G. We say that H is S-permutable in G if H permutes with every Sylow subgroup of G. A group G is called a generalized smooth group (GS-group) if [G/L] is totally smooth for every subgroup L of G of prime order. In this paper, we investigate the structure of G under the assumption that each subgroup of prime order is S-permutable if the maximal subgroups of G are GS-groups.


2019 ◽  
Vol 29 (08) ◽  
pp. 1419-1430
Author(s):  
William Cocke

The number of distinct [Formula: see text]-variable word maps on a finite group [Formula: see text] is the order of the rank [Formula: see text] free group in the variety generated by [Formula: see text]. For a group [Formula: see text], the number of word maps on just two variables can be quite large. We improve upon previous bounds for the number of word maps over a finite group [Formula: see text]. Moreover, we show that our bound is sharp for the number of 2-variable word maps over the affine group over fields of prime order and over the alternating group on five symbols.


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


2012 ◽  
Vol 49 (3) ◽  
pp. 390-405
Author(s):  
Wenbin Guo ◽  
Alexander Skiba

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow p-subgroup of G. We prove the followingTheorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-supersoluble if and only if for every cyclic subgroup H ofḠ (G) of prime order or order 4 (if p = 2), Ḡhas a normal subgroup T such thatHsḠandH∩T=HsḠ∩T.Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and |E ∩ T|p = |EsG ∩ T|p.Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T such that EsG = ET and |E ∩ Tp = |EsG ∩ T|p.


1982 ◽  
Vol 25 (1) ◽  
pp. 19-20 ◽  
Author(s):  
U. Dempwolff ◽  
S. K. Wong

In [3] Laffey has shown that if Z is a cyclic subgroup of a finite subgroup G, then either a nontrivial subgroup of Z is normal in the Fitting subgroup F(G) or there exists a g in G such that Zg∩Z = 1. In this note we offer a simple proof of the following generalisation of that result:Theorem. Let G be a finite group and X and Y cyclic subgroups of G. Then there exists a g in G such that Xg∩Y⊴F(G).


1964 ◽  
Vol 16 ◽  
pp. 435-442 ◽  
Author(s):  
Joseph Kohler

In this paper finite groups with the property M, that every maximal subgroup has prime or prime square index, are investigated. A short but ingenious argument was given by P. Hall which showed that such groups are solvable.B. Huppert showed that a finite group with the property M, that every maximal subgroup has prime index, is supersolvable, i.e. the chief factors are of prime order. We prove here, as a corollary of a more precise result, that if G has property M and is of odd order, then the chief factors of G are of prime or prime square order. The even-order case is different. For every odd prime p and positive integer m we shall construct a group of order 2apb with property M which has a chief factor of order larger than m.


Sign in / Sign up

Export Citation Format

Share Document