helly’s theorem
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

10.37236/9978 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Adam S. Jobson ◽  
André E. Kézdy ◽  
Jenő Lehel

Eckhoff proposed a combinatorial version of the classical Hadwiger–Debrunner $(p,q)$-problems as follows. Let ${\cal F}$ be a finite family of convex sets in the plane and  let $m\geqslant 1$ be an integer. If among every ${m+2\choose 2}$ members of ${\cal F}$ all but at most $m-1$ members have a common point, then there is a common point for all but at most $m-1$ members of ${\cal F}$. The claim is an extension of Helly's theorem ($m=1$). The case $m=2$ was verified by Nadler and by Perles. Here we show that Eckhoff 's conjecture follows from an old conjecture due to Szemerédi and Petruska concerning $3$-uniform hypergraphs. This conjecture is still open in general; its  solution for a few special cases answers Eckhoff's problem for $m=3,4$. A new proof for the case $m=2$ is also presented.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1338 ◽  
Author(s):  
Gerasimos Massouros ◽  
Christos Massouros

The various branches of Mathematics are not separated between themselves. On the contrary, they interact and extend into each other’s sometimes seemingly different and unrelated areas and help them advance. In this sense, the Hypercompositional Algebra’s path has crossed, among others, with the paths of the theory of Formal Languages, Automata and Geometry. This paper presents the course of development from the hypergroup, as it was initially defined in 1934 by F. Marty to the hypergroups which are endowed with more axioms and allow the proof of Theorems and Propositions that generalize Kleen’s Theorem, determine the order and the grade of the states of an automaton, minimize it and describe its operation. The same hypergroups lie underneath Geometry and they produce results which give as Corollaries well known named Theorems in Geometry, like Helly’s Theorem, Kakutani’s Lemma, Stone’s Theorem, Radon’s Theorem, Caratheodory’s Theorem and Steinitz’s Theorem. This paper also highlights the close relationship between the hyperfields and the hypermodules to geometries, like projective geometries and spherical geometries.


2018 ◽  
Vol 28 (04) ◽  
pp. 365-379
Author(s):  
Sourav Chakraborty ◽  
Rameshwar Pratap ◽  
Sasanka Roy ◽  
Shubhangi Saraf

Helly’s theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If [Formula: see text] is a set of [Formula: see text] points in [Formula: see text], we say that [Formula: see text] is [Formula: see text]-clusterable if it can be partitioned into [Formula: see text] clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object [Formula: see text]. In this paper, as an application of Helly’s theorem, by taking a constant size sample from [Formula: see text], we present a testing algorithm for [Formula: see text]-clustering, i.e., to distinguish between the following two cases: when [Formula: see text] is [Formula: see text]-clusterable, and when it is [Formula: see text]-far from being [Formula: see text]-clusterable. A set [Formula: see text] is [Formula: see text]-far [Formula: see text] from being [Formula: see text]-clusterable if at least [Formula: see text] points need to be removed from [Formula: see text] in order to make it [Formula: see text]-clusterable. We solve this problem when [Formula: see text], and [Formula: see text] is a symmetric convex object. For [Formula: see text], we solve a weaker version of this problem. Finally, as an application of our testing result, in the case of clustering with outliers, we show that with high probability one can find the approximate clusters by querying only a constant size sample.


Mathematika ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 272-291 ◽  
Author(s):  
Silouanos Brazitikos
Keyword(s):  

2014 ◽  
Vol 21 (0) ◽  
pp. 109-112
Author(s):  
Sergei Ivanov

Sign in / Sign up

Export Citation Format

Share Document