saddle point problems
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 94)

H-INDEX

43
(FIVE YEARS 3)

Author(s):  
Renbo Zhao

We develop stochastic first-order primal-dual algorithms to solve a class of convex-concave saddle-point problems. When the saddle function is strongly convex in the primal variable, we develop the first stochastic restart scheme for this problem. When the gradient noises obey sub-Gaussian distributions, the oracle complexity of our restart scheme is strictly better than any of the existing methods, even in the deterministic case. Furthermore, for each problem parameter of interest, whenever the lower bound exists, the oracle complexity of our restart scheme is either optimal or nearly optimal (up to a log factor). The subroutine used in this scheme is itself a new stochastic algorithm developed for the problem where the saddle function is nonstrongly convex in the primal variable. This new algorithm, which is based on the primal-dual hybrid gradient framework, achieves the state-of-the-art oracle complexity and may be of independent interest.


2021 ◽  
Vol 36 (6) ◽  
pp. 359-379
Author(s):  
Kirill M. Terekhov

Abstract This article is dedicated to the general finite-volume framework used to discretize and solve saddle-point problems of various physics. The framework applies the Ostrogradsky–Gauss theorem to transform a divergent part of the partial differential equation into a surface integral, approximated by the summation of vector fluxes over interfaces. The interface vector fluxes are reconstructed using the harmonic averaging point concept resulting in the unique vector flux even in a heterogeneous anisotropic medium. The vector flux is modified with the consideration of eigenvalues in matrix coefficients at vector unknowns to address both the hyperbolic and saddle-point problems, causing nonphysical oscillations and an inf-sup stability issue. We apply the framework to several problems of various physics, namely incompressible elasticity problem, incompressible Navier–Stokes, Brinkman–Hazen–Dupuit–Darcy, Biot, and Maxwell equations and explain several nuances of the application. Finally, we test the framework on simple analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document