model completeness
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Diego Calvanese ◽  
Silvio Ghilardi ◽  
Alessandro Gianola ◽  
Marco Montali ◽  
Andrey Rivkin

AbstractUniform interpolants have been largely studied in non-classical propositional logics since the nineties; a successive research line within the automated reasoning community investigated uniform quantifier-free interpolants (sometimes referred to as “covers”) in first-order theories. This further research line is motivated by the fact that uniform interpolants offer an effective solution to tackle quantifier elimination and symbol elimination problems, which are central in model checking infinite state systems. This was first pointed out in ESOP 2008 by Gulwani and Musuvathi, and then by the authors of the present contribution in the context of recent applications to the verification of data-aware processes. In this paper, we show how covers are strictly related to model completions, a well-known topic in model theory. We also investigate the computation of covers within the Superposition Calculus, by adopting a constrained version of the calculus and by defining appropriate settings and reduction strategies. In addition, we show that computing covers is computationally tractable for the fragment of the language used when tackling the verification of data-aware processes. This observation is confirmed by analyzing the preliminary results obtained using the mcmt tool to verify relevant examples of data-aware processes. These examples can be found in the last version of the tool distribution.





Author(s):  
Jennifer Chubb ◽  
Russell Miller ◽  
Reed Solomon
Keyword(s):  




Author(s):  
Diego Calvanese ◽  
Silvio Ghilardi ◽  
Alessandro Gianola ◽  
Marco Montali ◽  
Andrey Rivkin
Keyword(s):  


Author(s):  
Diego Calvanese ◽  
Silvio Ghilardi ◽  
Alessandro Gianola ◽  
Marco Montali ◽  
Andrey Rivkin
Keyword(s):  




2018 ◽  
Vol 61 (3) ◽  
pp. 811-823
Author(s):  
Ricardo Bianconi

AbstractWe prove model completeness for the expansion of the real field by the Weierstrass ℘ function as a function of the variable z and the parameter (or period) τ. We need to existentially define the partial derivatives of the ℘ function with respect to the variable z and the parameter τ. To obtain this result, it is necessary to include in the structure function symbols for the unrestricted exponential function and restricted sine function, the Weierstrass ζ function and the quasi-modular form E2 (we conjecture that these functions are not existentially definable from the functions ℘ alone or even if we use the exponential and restricted sine functions). We prove some auxiliary model-completeness results with the same functions composed with appropriate change of variables. In the conclusion, we make some remarks about the non-effectiveness of our proof and the difficulties to be overcome to obtain an effective model-completeness result, and how to extend these results to appropriate expansion of the real field by automorphic forms.



2017 ◽  
Vol 57 (7-8) ◽  
pp. 769-794
Author(s):  
Hirotaka Kikyo
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document