sturmian sequences
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 95 ◽  
pp. 103318
Author(s):  
Sebastián Barbieri ◽  
Sébastien Labbé ◽  
Štěpán Starosta
Keyword(s):  


2021 ◽  
Vol 17 (0) ◽  
pp. 481
Author(s):  
Sébastien Labbé

<p style='text-indent:20px;'>We extend the notion of Rauzy induction of interval exchange transformations to the case of toral <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation, i.e., <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action defined by rotations on a 2-torus. If <inline-formula><tex-math id="M3">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> denotes the symbolic dynamical system corresponding to a partition <inline-formula><tex-math id="M4">\begin{document}$ \mathscr{P} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M7">\begin{document}$ R $\end{document}</tex-math></inline-formula> is Cartesian on a sub-domain <inline-formula><tex-math id="M8">\begin{document}$ W $\end{document}</tex-math></inline-formula>, we express the 2-dimensional configurations in <inline-formula><tex-math id="M9">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> as the image under a <inline-formula><tex-math id="M10">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-dimensional morphism (up to a shift) of a configuration in <inline-formula><tex-math id="M11">\begin{document}$ \mathscr{X}_{\widehat{\mathscr{P}}|_W, \widehat{R}|_W} $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M12">\begin{document}$ \widehat{\mathscr{P}}|_W $\end{document}</tex-math></inline-formula> is the induced partition and <inline-formula><tex-math id="M13">\begin{document}$ \widehat{R}|_W $\end{document}</tex-math></inline-formula> is the induced <inline-formula><tex-math id="M14">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action on <inline-formula><tex-math id="M15">\begin{document}$ W $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We focus on one example, <inline-formula><tex-math id="M16">\begin{document}$ \mathscr{X}_{\mathscr{P}_0, R_0} $\end{document}</tex-math></inline-formula>, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift <inline-formula><tex-math id="M17">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, <inline-formula><tex-math id="M18">\begin{document}$ {\mathscr{P}}_0 $\end{document}</tex-math></inline-formula> is a Markov partition for the associated toral <inline-formula><tex-math id="M19">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M20">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula>. It also implies that the subshift <inline-formula><tex-math id="M21">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> is uniquely ergodic and is isomorphic to the toral <inline-formula><tex-math id="M22">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M23">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula> which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.</p>



2020 ◽  
Vol 343 (9) ◽  
pp. 111958
Author(s):  
Jean-Paul Allouche ◽  
Jeffrey Shallit ◽  
Zhi-Xiong Wen ◽  
Wen Wu ◽  
Jie-Meng Zhang
Keyword(s):  


2020 ◽  
Vol 16 (0) ◽  
pp. 109-153
Author(s):  
Joshua P. Bowman ◽  
◽  
Slade Sanderson ◽  
Keyword(s):  


2019 ◽  
Vol 53 (3-4) ◽  
pp. 125-151 ◽  
Author(s):  
Kateřina Medková ◽  
Edita Pelantová ◽  
Laurent Vuillon

Complementary symmetric Rote sequences are binary sequences which have factor complexity C(n) = 2n for all integers n ≥ 1 and whose languages are closed under the exchange of letters. These sequences are intimately linked to Sturmian sequences. Using this connection we investigate the return words and the derived sequences to the prefixes of any complementary symmetric Rote sequence v which is associated with a standard Sturmian sequence u. We show that any non-empty prefix of v has three return words. We prove that any derived sequence of v is coding of three interval exchange transformation and we determine the parameters of this transformation. We also prove that v is primitive substitutive if and only if u is primitive substitutive. Moreover, if the sequence u is a fixed point of a primitive morphism, then all derived sequences of v are also fixed by primitive morphisms. In that case we provide an algorithm for finding these fixing morphisms.





Author(s):  
Christophe Reutenauer

Christoffel words are naturally cyclic objects. They may be defined by the Cayley graphs of finite cyclic groups. They have many characterizations through their conjugation classes; among them, one is obtained using the Burrows–Wheeler transform (Mantaci, Restivo, and Sciortino); another one is due to Pirillo. The sets of their circular factors have many remarkable properties; in particular the number of them of length k is k+1, if k is smaller than the length of the Christoffel word, and it is a characteristic property (Borel and the author), reminiscent of the similar property of Sturmian sequences. A related characterization, similar to that of Droubay and Pirillo for Sturmian sequences, rests on the count of palindromic factors. The set of finite Sturmian words, that is, the set of all factors of all Christoffel words, coincides with the set of balanced words (Dulucq and Gouyou–Beauchamps).



Author(s):  
Christophe Reutenauer

In a short article written in Latin in 1875 [C1], Elwin Bruno Christoffel introduced a class of words on a binary alphabet, now called Christoffel words. They were followed in the twentieth century by the theory of Sturmian sequences, introduced by Morse and Hedlund in 1940 [...



2018 ◽  
Vol 38 (10) ◽  
pp. 5189-5204
Author(s):  
Jon Chaika ◽  
◽  
David Constantine ◽  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document