rauzy induction
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 17 (0) ◽  
pp. 481
Author(s):  
Sébastien Labbé

<p style='text-indent:20px;'>We extend the notion of Rauzy induction of interval exchange transformations to the case of toral <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation, i.e., <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action defined by rotations on a 2-torus. If <inline-formula><tex-math id="M3">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> denotes the symbolic dynamical system corresponding to a partition <inline-formula><tex-math id="M4">\begin{document}$ \mathscr{P} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M7">\begin{document}$ R $\end{document}</tex-math></inline-formula> is Cartesian on a sub-domain <inline-formula><tex-math id="M8">\begin{document}$ W $\end{document}</tex-math></inline-formula>, we express the 2-dimensional configurations in <inline-formula><tex-math id="M9">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> as the image under a <inline-formula><tex-math id="M10">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-dimensional morphism (up to a shift) of a configuration in <inline-formula><tex-math id="M11">\begin{document}$ \mathscr{X}_{\widehat{\mathscr{P}}|_W, \widehat{R}|_W} $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M12">\begin{document}$ \widehat{\mathscr{P}}|_W $\end{document}</tex-math></inline-formula> is the induced partition and <inline-formula><tex-math id="M13">\begin{document}$ \widehat{R}|_W $\end{document}</tex-math></inline-formula> is the induced <inline-formula><tex-math id="M14">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action on <inline-formula><tex-math id="M15">\begin{document}$ W $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We focus on one example, <inline-formula><tex-math id="M16">\begin{document}$ \mathscr{X}_{\mathscr{P}_0, R_0} $\end{document}</tex-math></inline-formula>, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift <inline-formula><tex-math id="M17">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, <inline-formula><tex-math id="M18">\begin{document}$ {\mathscr{P}}_0 $\end{document}</tex-math></inline-formula> is a Markov partition for the associated toral <inline-formula><tex-math id="M19">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M20">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula>. It also implies that the subshift <inline-formula><tex-math id="M21">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> is uniquely ergodic and is isomorphic to the toral <inline-formula><tex-math id="M22">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M23">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula> which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.</p>


2019 ◽  
Vol 40 (8) ◽  
pp. 2073-2097
Author(s):  
ADRIEN BOULANGER ◽  
CHARLES FOUGERON ◽  
SELIM GHAZOUANI

We describe in this article the dynamics of a one-parameter family of affine interval exchange transformations. This amounts to studying the directional foliations of a particular dilatation surface introduced in Duryev et al [Affine surfaces and their Veech groups. Preprint, 2016, arXiv:1609.02130], the Disco surface. We show that this family displays various dynamical behaviours: it is generically dynamically trivial but for a Cantor set of parameters the leaves of the foliations accumulate to a (transversely) Cantor set. This study is achieved through analysis of the dynamics of the Veech group of this surface combined with a modified version of Rauzy induction in the context of affine interval exchange transformations.


2017 ◽  
Vol 51 (3) ◽  
pp. 135-139
Author(s):  
Francesco Dolce ◽  
Dominique Perrin

2017 ◽  
Vol 38 (8) ◽  
pp. 3101-3144 ◽  
Author(s):  
ANTONIO LINERO BAS ◽  
GABRIEL SOLER LÓPEZ

We consider interval exchange transformations of$n$intervals with$k$flips, or$(n,k)$-IETs for short, for positive integers$k,n$with$k\leq n$. Our main result establishes the existence of minimal uniquely ergodic$(n,k)$-IETs when$n\geq 4$; moreover, these IETs are self-induced for$2\leq k\leq n-1$. This result extends the work on transitivity in Gutierrezet al[Transitive circle exchange transformations with flips.Discrete Contin. Dyn. Syst. 26(1) (2010), 251–263]. In order to achieve our objective we make a direct construction; in particular, we use the Rauzy induction to build a periodic Rauzy graph whose associated matrix has a positive power. Then we use a result in the Perron–Frobenius theory [Pullman, A geometric approach to the theory of non-negative matrices.Linear Algebra Appl. 4(1971) 297–312] which allows us to ensure the existence of these minimal self-induced and uniquely ergodic$(n,k)$-IETs,$2\leq k\leq n-1$. We then find other permutations in the same Rauzy class generating minimal uniquely ergodic$(n,1)$- and$(n,n)$-IETs.


2016 ◽  
Vol 37 (5) ◽  
pp. 1492-1536 ◽  
Author(s):  
KAE INOUE ◽  
HITOSHI NAKADA

We investigate a certain dual relationship between piecewise rotations of a circle and interval exchange maps. In 2005, Cruz and da Rocha [A generalization of the Gauss map and some classical theorems on continued fractions. Nonlinearity18 (2005), 505–525]  introduced a notion of ‘castles’ arising from piecewise rotations of a circle. We extend their idea and introduce a continuum version of castles, which we show to be equivalent to Veech’s zippered rectangles [Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2) 115 (1982), 201–242]. We show that a fairly natural map defined on castles represents the inverse of the natural extension of the Rauzy map.


2011 ◽  
Vol 33 (1) ◽  
pp. 221-246 ◽  
Author(s):  
TOMASZ MIERNOWSKI ◽  
ARNALDO NOGUEIRA

AbstractThe two-dimensional homogeneous Euclidean algorithm is the central motivation for the definition of the classical multidimensional continued fraction algorithms, such as Jacobi–Perron, Poincaré, Brun and Selmer algorithms. The Rauzy induction, a generalization of the Euclidean algorithm, is a key tool in the study of interval exchange transformations. Both maps are known to be dissipative and ergodic with respect to Lebesgue measure. Here we prove that they are exact.


2011 ◽  
Vol 32 (6) ◽  
pp. 1930-1971 ◽  
Author(s):  
VAIBHAV S. GADRE

AbstractA natural generalization of interval exchange maps are linear involutions, first introduced by Danthony and Nogueira [Measured foliations on non-orientable surfaces.Ann. Sci. Éc. Norm. Supér.(4)26(6) (1993), 645–664]. Recurrent train tracks with a single switch provide a subclass of linear involutions. We call such linear involutions non-classical interval exchanges. They are related to measured foliations on orientable flat surfaces. Non-classical interval exchanges can be studied as a dynamical system by considering Rauzy induction in this context. This gives a refinement process on the parameter space similar to Kerckhoff’s simplicial systems. We show that the refinement process gives an expansion that has a key dynamical property calleduniform distortion. We use uniform distortion to prove normality of the expansion. Consequently, we prove an analog of Keane’s conjecture: almost every non-classical interval exchange is uniquely ergodic. Uniform distortion has been independently shown in [A. Avila and M. Resende. Exponential mixing for the Teichmüller flow in the space of quadratic differentials, http://arxiv.org/abs/0908.1102].


Sign in / Sign up

Export Citation Format

Share Document