quantitative stability
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Author(s):  
E. Cinti ◽  
F. Glaudo ◽  
A. Pratelli ◽  
X. Ros-Oton ◽  
J. Serra

2021 ◽  
Vol 118 (49) ◽  
pp. e2109896118
Author(s):  
Zachary R. Miller ◽  
Stefano Allesina

Across the tree of life, organisms modify their local environment, rendering it more or less hospitable for other species. Despite the ubiquity of these processes, simple models that can be used to develop intuitions about the consequences of widespread habitat modification are lacking. Here, we extend the classic Levins metapopulation model to a setting where each of n species can colonize patches connected by dispersal, and when patches are vacated via local extinction, they retain a “memory” of the previous occupant—modeling habitat modification. While this model can exhibit a wide range of dynamics, we draw several overarching conclusions about the effects of modification and memory. In particular, we find that any number of species may potentially coexist, provided that each is at a disadvantage when colonizing patches vacated by a conspecific. This notion is made precise through a quantitative stability condition, which provides a way to unify and formalize existing conceptual models. We also show that when patch memory facilitates coexistence, it generically induces a positive relationship between diversity and robustness (tolerance of disturbance). Our simple model provides a portable, tractable framework for studying systems where species modify and react to a shared landscape.


2021 ◽  
Author(s):  
Zachary R Miller ◽  
Stefano Allesina

Across the tree of life, organisms modify their local environment, rendering it more or less hospitable for other species. Despite the ubiquity of these processes, simple models that can be used to develop intuitions about the consequences of widespread habitat modification are lacking. Here we extend the classic Levins' metapopulation model to a setting where each of n species can colonize patches connected by dispersal, and when patches are vacated via local extinction, they retain a "memory" of the previous occupant---modeling habitat modification. While this model can exhibit a wide range of dynamics, we draw several overarching conclusions about the effects of modification and memory. In particular, we find that any number of species may potentially coexist, provided that each is at a disadvantage when colonizing patches vacated by a conspecific. This notion is made precise through a quantitative stability condition, which provides a way to unify and formalize existing conceptual models. We also show that when patch memory facilitates coexistence, it generically induces a positive relationship between diversity and robustness (tolerance of disturbance). Our simple model provides a portable, tractable framework for studying systems where species modify and react to a shared landscape.


Author(s):  
M. Hoffhues ◽  
W. Römisch ◽  
T. M. Surowiec

AbstractThe vast majority of stochastic optimization problems require the approximation of the underlying probability measure, e.g., by sampling or using observations. It is therefore crucial to understand the dependence of the optimal value and optimal solutions on these approximations as the sample size increases or more data becomes available. Due to the weak convergence properties of sequences of probability measures, there is no guarantee that these quantities will exhibit favorable asymptotic properties. We consider a class of infinite-dimensional stochastic optimization problems inspired by recent work on PDE-constrained optimization as well as functional data analysis. For this class of problems, we provide both qualitative and quantitative stability results on the optimal value and optimal solutions. In both cases, we make use of the method of probability metrics. The optimal values are shown to be Lipschitz continuous with respect to a minimal information metric and consequently, under further regularity assumptions, with respect to certain Fortet-Mourier and Wasserstein metrics. We prove that even in the most favorable setting, the solutions are at best Hölder continuous with respect to changes in the underlying measure. The theoretical results are tested in the context of Monte Carlo approximation for a numerical example involving PDE-constrained optimization under uncertainty.


Sign in / Sign up

Export Citation Format

Share Document