recompression reaction
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2009 ◽  
Vol 10 (4) ◽  
pp. 231-250 ◽  
Author(s):  
H H Song ◽  
C F Edwards

In-cylinder pre-processing (or recompression reaction) of pilot-injected fuel during negative value overlap (NVO) has been investigated as a method to extend the low-load limit of residual-effected homogeneous charge compression ignition (HCCI). In an effort to elucidate the chemical and thermal effects involved, model calculations have been performed on the recompression reaction and ignition delay of the recompression products using a reduced n-heptane mechanism (160 reactions, 1424 reactions) and a zero-dimensional kinetics model. Parametric studies were performed to cover possible operating choices for HCCI and to understand their effects on the recompression reaction and mixture ignitability. From the study it is demonstrated that the extent of recompression reaction is limited by chemical kinetics, not thermodynamics, and that residual oxygen during NVO is a determining species for the extent and speciation of the recompression reaction. The recompression product mixture exhibits an overall shorter ignition delay than those of the base fuel, except under lean conditions when significant oxidation during NVO leaves only a small amount of fuel available for main ignition. The thermal consequence of the recompression reaction is also largely dependent on oxygen: at near-stoichiometric conditions, the recompression reaction is endothermic from fuel pyrolysis, whereas at lean conditions, the exothermic recompression reaction becomes dominant. Therefore, the chemical and thermal consequences of the recompression reaction exhibit competing effects on mixture ignitability, which leads to an optimum oxygen concentration (equivalence ratio) for reducing ignition delay and extending HCCI operability.


2009 ◽  
Vol 10 (4) ◽  
pp. 215-229 ◽  
Author(s):  
H H Song ◽  
A Padmanabhan ◽  
N B Kaahaaina ◽  
C F Edwards

Experiments have been reported in the literature in which the low-load limit of a retention-mode HCCI engine operating on gasoline has been significantly extended by pre-processing of the fuel during negative valve overlap. This paper presents experimental studies in which this low-load-limit extension is demonstrated and characterized using simple, single-component hydrocarbon fuels with relatively well-known chemical kinetics. The model fuels were n-heptane and i-octane and this choice was made both because of the extensive work that has been undertaken to develop their chemical kinetic mechanisms and because these fuels span the range of ignitability that is likely to be of interest for HCCI engines. The experimental results reported here show that both fuels exhibit load extension to as low as 1 bar net indicated mean effective pressure when operated at high residual mass fractions, low equivalence ratios, and an appropriate choice of compression ratio (13 for n-heptane, 18 for i-octane). Near the low-load limit, combustion is stable, exhibits slightly advanced timing, has relatively low unburned hydrocarbon emissions, negligible (< 5 ppm) NO emissions, and slightly increased CO emissions (compared to higher load conditions). The indicated efficiency of low-load operation with recompression reaction is somewhat reduced, mainly due to increased heat transfer and decreased combustion efficiency.


Sign in / Sign up

Export Citation Format

Share Document