negative valve overlap
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
pp. 146808742096910
Author(s):  
Mrunal C Joshi ◽  
Dheeraj Gosala ◽  
Gregory M Shaver ◽  
James McCarthy ◽  
Lisa Farrell

Rapid warm-up of a diesel engine aftertreatment system (ATS) is a challenge at low loads. Modulating exhaust manifold pressure (EMP) to increase engine pumping work, fuel consumption, and as a result, engine-outlet temperature, is a commonly used technique for ATS thermal management at low loads. This paper introduces exhaust valve profile modulation as a technique to increase engine-outlet temperature for ATS thermal management, without requiring modulation of exhaust manifold pressure. Experimental steady state results at 800 RPM/1.3 bar BMEP (curb idle) demonstrate that early exhaust valve opening with negative valve overlap (EEVO+NVO) can achieve engine-outlet temperature in excess of 255°C with 5.7% lower fuel consumption, 12% lower engine out NOx and 20% lower engine-out soot than the conventional thermal management strategy. Late exhaust valve opening with internal EGR via reinduction (LEVO+Reinduction) resulted in engine-outlet temperature in excess of 280°C, while meeting emission constraints at no fuel consumption penalty. This work also demonstrates that LEVO in conjunction with modulation of exhaust manifold pressure results in engine-outlet temperature in excess of 340°C while satisfying desired emission constraints. Aggressive use of LEVO can result in engine-outlet temperatures of 460°C, capable of active regeneration of DPF at curb idle, without the significant increase in engine-out soot emissions seen in previously studied strategies.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuelin Li ◽  
Zihan Zhang ◽  
Zhiqiang Liu ◽  
Peng Tong ◽  
Dezhi Yang ◽  
...  

In order to study the effect of negative valve overlap on combustion and emission characteristics of a homogeneous charge compression ignition engine fueled with natural gas and hydrogen, the test and the simulation were conducted using an engine cycle model coupling the chemical kinetic reaction mechanism under different valve timing conditions. Results show that the internal EGR formed by using negative valve overlap could heat the inlet mixtures and improve the spontaneous ignition characteristic of the engine. The residual exhaust gas could slow down the heat release rate, decrease the pressure rise rate and the maximum combustion temperature, and reduce the NOx emission simultaneously. Among the three NVO schemes, the strategy of changing the intake valve opening timing individually can create the least power loss, and the symmetric NVO strategy which changes both the exhaust valve closing timing and the intake valve opening timing simultaneously can achieve the best heating effect of inlet mixtures and the satisfactory decrease of combustion temperature, as well as the largest reduction of NOx emission.


2021 ◽  
pp. 146808742098459
Author(s):  
Mrunal C Joshi ◽  
Gregory M Shaver ◽  
Kalen Vos ◽  
James McCarthy ◽  
Lisa Farrell

Low air-flow diesel engine strategies are advantageous during low load operation to maintain temperatures of a warmed-up aftertreatment system (ATS) while reducing fuel consumption and engine-out emissions. This paper presents results at curb idle for internal EGR (iEGR) that demonstrate low airflow and reduced engine-out emissions during fuel-efficient ATS temperature maintenance operation. Internal EGR via reinduction and trapping using negative valve overlap (NVO) are compared to each other, conventional operation and to other low airflow approaches including cylinder deactivation (CDA). At 800 RPM/1.3 bar BMEP (curb idle) iEGR via reinduction enables 200°C engine-out temperature combined with 70% lower NO X, 35% lower fuel consumption, and 40% lower exhaust flow rate than conventional thermal management operation. Internal EGR via trapping using NVO resulted in an engine-out temperature of 185°C, with 56% lower NO X and 25% lower fuel consumption than conventional thermal management operation. Both iEGR strategies have lower engine-out temperatures and higher exhaust flow rates than CDA. No external EGR is required for either iEGR strategy. “iEGR via reinduction” outperforms “iEGR via NVO” as a result of higher open cycle efficiency (via less pumping work) and higher closed-cycle efficiency (via higher specific heat ratio).


2021 ◽  
Vol 54 (10) ◽  
pp. 15-20
Author(s):  
Seitaro Kimura ◽  
Akihiro Takeshita ◽  
Yudai Yamasaki ◽  
Mitsuhiro Muto ◽  
Takayuki Hikita ◽  
...  

2020 ◽  
pp. 146808742097289
Author(s):  
Maximilian Wick ◽  
Denghao Zhu ◽  
Jun Deng ◽  
Liguang Li ◽  
Jakob Andert

Homogenous charge compression ignition (HCCI) combustion is a low temperature combustion process which combines high combustion efficiency with ultra-low [Formula: see text] raw emissions. Steep increases of the in-cylinder pressure and unstable combustion sequences at the limits of the operating range can damage the engine and limit the use of HCCI to part load operation. This can be done using closed loop combustion control based on combustion parameters like the indicated mean effective pressure and the combustion phasing. Since in-cylinder pressure sensors are expensive components and therefore not suitable for series application, ion current sensors can be used as an additional source of information about the combustion. Combustion analysis using methods similar to those used in pressure based measurements can be implemented using an online analysis of the ion current signal. In this study, the ion current sensor will be examined for its suitability for combustion control under HCCI conditions with lean air/fuel ratios and high compression ratios. Research has found that the ion current signal is strongly depended on the boundary conditions. Especially the air/fuel ratio which plays an important role for signal strength during the combustion process. When using valve timings with negative valve overlap in combination with a fuel pre-injection, a further peak of the ion current signal close to the gas exchange top dead center can be found in addition to the one during combustion. At the same time, it is hard to extract information from the cylinder pressure signal during NVO. Under lean conditions this peak even exceeds the signal during combustion. This study analyzes the ion current signal during NVO and its potential to be used for future combustion control concepts. The ion current signal shows potential to stabilize HCCI combustion at high loads. However, the prediction of late combustion cycles is still challenging.


Author(s):  
Seyfi Polat ◽  
Hamit Solmaz ◽  
Ahmet Uyumaz ◽  
Alper Calam ◽  
Emre Yılmaz ◽  
...  

Abstract In this study, the effects of negative valve overlap (NVO) on homogenous charge compression ignition (HCCI) combustion and engine performance were experimentally investigated. A four stroke, single cylinder, port injection HCCI engine was operated at −16 deg crank angle (CA), −8 deg CA, and +8 deg CA valve overlap values and different lambda values and engine speeds at wide open throttle. RON40 and RON60 were used as test fuels in view of combustion and performance characteristics in HCCI mode. The variations of indicated mean effective pressure (IMEP), residual gas, CA50, indicated thermal efficiency (ITE), indicated specific fuel consumption (ISFC), maximum pressure rise rate (MPRR) and ringing intensity (RI) were observed on HCCI combustion. The results showed that NVO caused to trap residual gases in the combustion chamber. Hot residual gases showed heating and dilution effect on HCCI combustion. Combustion was retarded with the presence of residual gas at −16 deg CA NVO. Test results showed that higher imep and maximum in-cylinder pressure were obtained with RON60 according to RON40. As expected, CA50 was obtained later with RON60 compared to RON40 due to more resistance of auto-ignition. RON60 residual gas prevented the rapid and sudden combustion due to higher heat capacity of charge mixture. RI decreased with the usage of RON60 compared to RON40. Significant decrease was seen on RI with RON60 especially at lower lambda values. It was seen that HCCI combustion can be controlled with NVO and operating range of HCCI engines can be extended.


2020 ◽  
Vol 257 ◽  
pp. 114018 ◽  
Author(s):  
Jacek Hunicz ◽  
Maciej Mikulski ◽  
Michal S. Geca ◽  
Arkadiusz Rybak

Sign in / Sign up

Export Citation Format

Share Document