complex geodesic
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 21 (2) ◽  
pp. 149-162
Author(s):  
Sylwester Zając ◽  
Paweł Zapałowski

Abstract In this paper the complex geodesics of a convex domain in ℂ n are studied. One of the main results provides a certain necessary condition for a holomorphic map to be a complex geodesic for a convex domain in ℂ n . The established condition is of geometric nature and it allows to find a formula for every complex geodesic. The ℂ-convexity of semitube domains is also discussed.


Author(s):  
Jim Agler ◽  
Zinaida Lykova ◽  
N. J. Young

AbstractThe symmetrized bidisc $$\begin{aligned} G {\mathop {=}\limits ^\mathrm{{def}}}\{(z+w,zw):|z|<1,\quad |w|<1\}, \end{aligned}$$ G = def { ( z + w , z w ) : | z | < 1 , | w | < 1 } , under the Carathéodory metric, is a complex Finsler space of cohomogeneity 1 in which the geodesics, both real and complex, enjoy a rich geometry. As a Finsler manifold, G does not admit a natural notion of angle, but we nevertheless show that there is a notion of orthogonality. The complex tangent bundle TG splits naturally into the direct sum of two line bundles, which we call the sharp and flat bundles, and which are geometrically defined and therefore covariant under automorphisms of G. Through every point of G, there is a unique complex geodesic of G in the flat direction, having the form $$\begin{aligned} F^\beta {\mathop {=}\limits ^\mathrm{{def}}}\{(\beta +{\bar{\beta }} z,z)\ : z\in \mathbb {D}\} \end{aligned}$$ F β = def { ( β + β ¯ z , z ) : z ∈ D } for some $$\beta \in \mathbb {D}$$ β ∈ D , and called a flat geodesic. We say that a complex geodesic Dis orthogonal to a flat geodesic F if D meets F at a point $$\lambda $$ λ and the complex tangent space $$T_\lambda D$$ T λ D at $$\lambda $$ λ is in the sharp direction at $$\lambda $$ λ . We prove that a geodesic D has the closest point property with respect to a flat geodesic F if and only if D is orthogonal to F in the above sense. Moreover, G is foliated by the geodesics in G that are orthogonal to a fixed flat geodesic F.


2017 ◽  
Vol 121 (1) ◽  
pp. 57 ◽  
Author(s):  
Jouni Parkkonen ◽  
Frédéric Paulin

Given an imaginary quadratic extension $K$ of $\mathbb{Q}$, we give a classification of the maximal nonelementary subgroups of the Picard modular group $\operatorname{PSU}_{1,2}(\mathcal{O}_K)$ preserving a complex geodesic in the complex hyperbolic plane $\mathbb{H}^2_\mathbb{C}$. Complementing work of Holzapfel, Chinburg-Stover and M\"oller-Toledo, we show that these maximal $\mathbb{C}$-Fuchsian subgroups are arithmetic, arising from a quaternion algebra $\Big(\!\begin{array}{c} D\,,D_K\\\hline\mathbb{Q}\end{array} \!\Big)$ for some explicit $D\in\mathbb{N}-\{0\}$ and $D_K$ the discriminant of $K$. We thus prove the existence of infinitely many orbits of $K$-arithmetic chains in the hypersphere of $\mathbb{P}_2(\mathbb{C})$.


Sign in / Sign up

Export Citation Format

Share Document