symmetrized bidisc
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Tirthankar Bhattacharyya ◽  
B Krishna Das ◽  
Haripada Sau

Author(s):  
Jim Agler ◽  
Zinaida Lykova ◽  
N. J. Young

AbstractThe symmetrized bidisc $$\begin{aligned} G {\mathop {=}\limits ^\mathrm{{def}}}\{(z+w,zw):|z|<1,\quad |w|<1\}, \end{aligned}$$ G = def { ( z + w , z w ) : | z | < 1 , | w | < 1 } , under the Carathéodory metric, is a complex Finsler space of cohomogeneity 1 in which the geodesics, both real and complex, enjoy a rich geometry. As a Finsler manifold, G does not admit a natural notion of angle, but we nevertheless show that there is a notion of orthogonality. The complex tangent bundle TG splits naturally into the direct sum of two line bundles, which we call the sharp and flat bundles, and which are geometrically defined and therefore covariant under automorphisms of G. Through every point of G, there is a unique complex geodesic of G in the flat direction, having the form $$\begin{aligned} F^\beta {\mathop {=}\limits ^\mathrm{{def}}}\{(\beta +{\bar{\beta }} z,z)\ : z\in \mathbb {D}\} \end{aligned}$$ F β = def { ( β + β ¯ z , z ) : z ∈ D } for some $$\beta \in \mathbb {D}$$ β ∈ D , and called a flat geodesic. We say that a complex geodesic Dis orthogonal to a flat geodesic F if D meets F at a point $$\lambda $$ λ and the complex tangent space $$T_\lambda D$$ T λ D at $$\lambda $$ λ is in the sharp direction at $$\lambda $$ λ . We prove that a geodesic D has the closest point property with respect to a flat geodesic F if and only if D is orthogonal to F in the above sense. Moreover, G is foliated by the geodesics in G that are orthogonal to a fixed flat geodesic F.


Author(s):  
Tirthankar Bhattacharyya ◽  
B Krishna Das ◽  
Haripada Sau

Abstract The symmetrized bidisc has been a rich field of holomorphic function theory and operator theory. A certain well-known reproducing kernel Hilbert space of holomorphic functions on the symmetrized bidisc resembles the Hardy space of the unit disc in several aspects. This space is known as the Hardy space of the symmetrized bidisc. We introduce the study of those operators on the Hardy space of the symmetrized bidisc that are analogous to Toeplitz operators on the Hardy space of the unit disc. More explicitly, we first study multiplication operators on a bigger space (an $L^2$-space) and then study compressions of these multiplication operators to the Hardy space of the symmetrized bidisc and prove the following major results. (1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as a Hilbert space, but as a Hilbert module over the polynomial ring and finds three isomorphic copies of it as $\mathbb D^2$-contractive Hilbert modules. (2) Theorem II provides an algebraic, Brown and Halmos-type characterization of Toeplitz operators. (3) Theorem III gives several characterizations of an analytic Toeplitz operator. (4) Theorem IV characterizes asymptotic Toeplitz operators. (5) Theorem V is a commutant lifting theorem. (6) Theorem VI yields an algebraic characterization of dual Toeplitz operators. Every section from Section 2 to Section 7 contains a theorem each, the main result of that section.


2019 ◽  
Vol 473 (2) ◽  
pp. 1377-1413
Author(s):  
Jim Agler ◽  
Zinaida Lykova ◽  
N.J. Young

2019 ◽  
Vol 258 (1242) ◽  
pp. 0-0 ◽  
Author(s):  
Jim Agler ◽  
Zinaida Lykova ◽  
Nicholas Young

2018 ◽  
Vol 5 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Sourav Pal ◽  
Samriddho Roy

AbstractWe present a set of necessary and sufficient conditions that provides a Schwarz lemma for the tetrablock E. As an application of this result, we obtain a Schwarz lemma for the symmetrized bidisc G2. In either case, our results generalize all previous results in this direction for E and G2.


Sign in / Sign up

Export Citation Format

Share Document