carathéodory metric
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 1-51
Author(s):  
CHRIS CONNELL ◽  
THANG NGUYEN ◽  
RALF SPATZIER

Abstract This paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Flynn ◽  
Nguyen Lam ◽  
Guozhen Lu

Abstract In this paper we establish general weighted Hardy identities for several subelliptic settings including Hardy identities on the Heisenberg group, Carnot groups with respect to a homogeneous gauge and Carnot–Carathéodory metric, general nilpotent groups, and certain families of Hörmander vector fields. We also introduce new weighted uncertainty principles in these settings. This is done by continuing the program initiated by [N. Lam, G. Lu and L. Zhang, Factorizations and Hardy’s-type identities and inequalities on upper half spaces, Calc. Var. Partial Differential Equations 58 2019, 6, Paper No. 183; N. Lam, G. Lu and L. Zhang, Geometric Hardy’s inequalities with general distance functions, J. Funct. Anal. 279 2020, 8, Article ID 108673] of using the Bessel pairs introduced by [N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications, Math. Surveys Monogr. 187, American Mathematical Society, Providence, 2013] to obtain Hardy identities. Using these identities, we are able to improve significantly existing Hardy inequalities in the literature in the aforementioned subelliptic settings. In particular, we establish the Hardy identities and inequalities in the spirit of [H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 1997, 443–469] and [H. Brezis and M. Marcus, Hardy’s inequalities revisited. Dedicated to Ennio De Giorgi, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 1997, 1–2, 217–237] in these settings.


Author(s):  
Jim Agler ◽  
Zinaida Lykova ◽  
N. J. Young

AbstractThe symmetrized bidisc $$\begin{aligned} G {\mathop {=}\limits ^\mathrm{{def}}}\{(z+w,zw):|z|<1,\quad |w|<1\}, \end{aligned}$$ G = def { ( z + w , z w ) : | z | < 1 , | w | < 1 } , under the Carathéodory metric, is a complex Finsler space of cohomogeneity 1 in which the geodesics, both real and complex, enjoy a rich geometry. As a Finsler manifold, G does not admit a natural notion of angle, but we nevertheless show that there is a notion of orthogonality. The complex tangent bundle TG splits naturally into the direct sum of two line bundles, which we call the sharp and flat bundles, and which are geometrically defined and therefore covariant under automorphisms of G. Through every point of G, there is a unique complex geodesic of G in the flat direction, having the form $$\begin{aligned} F^\beta {\mathop {=}\limits ^\mathrm{{def}}}\{(\beta +{\bar{\beta }} z,z)\ : z\in \mathbb {D}\} \end{aligned}$$ F β = def { ( β + β ¯ z , z ) : z ∈ D } for some $$\beta \in \mathbb {D}$$ β ∈ D , and called a flat geodesic. We say that a complex geodesic Dis orthogonal to a flat geodesic F if D meets F at a point $$\lambda $$ λ and the complex tangent space $$T_\lambda D$$ T λ D at $$\lambda $$ λ is in the sharp direction at $$\lambda $$ λ . We prove that a geodesic D has the closest point property with respect to a flat geodesic F if and only if D is orthogonal to F in the above sense. Moreover, G is foliated by the geodesics in G that are orthogonal to a fixed flat geodesic F.


Author(s):  
Daniele Gerosa ◽  
Roberto Monti ◽  
Daniele Morbidelli

In [Formula: see text] we consider the vector fields [Formula: see text] where [Formula: see text]. Let [Formula: see text] be the (closed) upper half-space and let [Formula: see text] be a function such that [Formula: see text] for some [Formula: see text]. In this paper, we prove that the restriction of [Formula: see text] to the plane [Formula: see text] belongs to a suitable Besov space that is defined using the Carnot–Carathéodory metric associated with [Formula: see text] and [Formula: see text] and the related perimeter measure.


2018 ◽  
Vol 123 (1) ◽  
pp. 101-120 ◽  
Author(s):  
Bartosch Ruszkowski

We prove a Hardy-type inequality for the gradient of the Heisenberg Laplacian on open bounded convex polytopes on the first Heisenberg group. The integral weight of the Hardy inequality is given by the distance function to the boundary measured with respect to the Carnot-Carathéodory metric. The constant depends on the number of hyperplanes, given by the boundary of the convex polytope, which are not orthogonal to the hyperplane $x_3=0$.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Piotr Hajłasz ◽  
Scott Zimmerman

Abstract We provide a new and elementary proof for the structure of geodesics in the Heisenberg group Hn. The proof is based on a new isoperimetric inequality for closed curves in R2n.We also prove that the Carnot- Carathéodory metric is real analytic away from the center of the group.


Sign in / Sign up

Export Citation Format

Share Document