hankel operator
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 15 (6) ◽  
Author(s):  
Watheq Bani-Domi ◽  
Fuad Kittaneh ◽  
Mutaz Shatnawi




2020 ◽  
Vol 46 (2) ◽  
pp. 225-242
Author(s):  
X. Cheng ◽  
M. Jin ◽  
Q. Wang
Keyword(s):  


2020 ◽  
Vol 40 (2) ◽  
pp. 171-207
Author(s):  
Salem Ben Saïd ◽  
Mohamed Amine Boubatra ◽  
Mohamed Sifi

In this paper we introduce function spaces denoted by \(BH_{\kappa,\beta}^{p,r}\) (\(0\lt\beta\lt 1\), \(1\leq p, r \leq +\infty\)) as subspaces of \(L^p\) that we call deformed Besov-Hankel spaces. We provide characterizations of these spaces in terms of Bochner-Riesz means in the case \(1\leq p\leq +\infty\) and in terms of partial Hankel integrals in the case \(1\lt p\lt +\infty\) associated to the deformed Hankel operator by a parameter \(\kappa\gt 0\). For \(p=r=+\infty\), we obtain an approximation result involving partial Hankel integrals.



Author(s):  
Miron Bekker ◽  
Joseph Cima
Keyword(s):  


2020 ◽  
pp. 271-281
Author(s):  
Yuch ng Li ◽  
Yam ng Li
Keyword(s):  


2018 ◽  
Vol 56 (5) ◽  
pp. 3685-3707 ◽  
Author(s):  
Tomomichi Hagiwara ◽  
Akira Inai ◽  
Jung Hoon Kim




Sign in / Sign up

Export Citation Format

Share Document