fpt algorithms
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 17)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Bertrand Marchand ◽  
Yann Ponty ◽  
Laurent Bulteau

Abstract Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed-Parameter Tractable algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to extend their scope of applicability, we introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges such that a given tree-decomposition can be slimmed down to a prescribed treewidth tw. Our rationale is that the time gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to take deleted edges into account. Our core result is an FPT dynamic programming algorithm for Tree-Diet, using 2^O(tw)n time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g., NP-hardness when tw or tw − tw is constant). We propose a prototype implementation for our approach which we apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption of tree-decomposition-based algorithms in Bioinformatics.


Algorithmica ◽  
2021 ◽  
Author(s):  
Arnaud Casteigts ◽  
Anne-Sophie Himmel ◽  
Hendrik Molter ◽  
Philipp Zschoche

AbstractComputing a (short) path between two vertices is one of the most fundamental primitives in graph algorithmics. In recent years, the study of paths in temporal graphs, that is, graphs where the vertex set is fixed but the edge set changes over time, gained more and more attention. A path is time-respecting, or temporal, if it uses edges with non-decreasing time stamps. We investigate a basic constraint for temporal paths, where the time spent at each vertex must not exceed a given duration $$\varDelta $$ Δ , referred to as $$\varDelta $$ Δ -restless temporal paths. This constraint arises naturally in the modeling of real-world processes like packet routing in communication networks and infection transmission routes of diseases where recovery confers lasting resistance. While finding temporal paths without waiting time restrictions is known to be doable in polynomial time, we show that the “restless variant” of this problem becomes computationally hard even in very restrictive settings. For example, it is W[1]-hard when parameterized by the distance to disjoint path of the underlying graph, which implies W[1]-hardness for many other parameters like feedback vertex number and pathwidth. A natural question is thus whether the problem becomes tractable in some natural settings. We explore several natural parameterizations, presenting FPT algorithms for three kinds of parameters: (1) output-related parameters (here, the maximum length of the path), (2) classical parameters applied to the underlying graph (e.g., feedback edge number), and (3) a new parameter called timed feedback vertex number, which captures finer-grained temporal features of the input temporal graph, and which may be of interest beyond this work.


Algorithmica ◽  
2021 ◽  
Author(s):  
Robert Ganian ◽  
Sebastian Ordyniak ◽  
M. S. Ramanujan

AbstractIn this paper we revisit the classical edge disjoint paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our focus lies on structural parameterizations for the problem that allow for efficient (polynomial-time or FPT) algorithms. As our first result, we answer an open question stated in Fleszar et al. (Proceedings of the ESA, 2016), by showing that the problem can be solved in polynomial time if the input graph has a feedback vertex set of size one. We also show that EDP parameterized by the treewidth and the maximum degree of the input graph is fixed-parameter tractable. Having developed two novel algorithms for EDP using structural restrictions on the input graph, we then turn our attention towards the augmented graph, i.e., the graph obtained from the input graph after adding one edge between every terminal pair. In constrast to the input graph, where EDP is known to remain -hard even for treewidth two, a result by Zhou et al. (Algorithmica 26(1):3--30, 2000) shows that EDP can be solved in non-uniform polynomial time if the augmented graph has constant treewidth; we note that the possible improvement of this result to an FPT-algorithm has remained open since then. We show that this is highly unlikely by establishing the [1]-hardness of the problem parameterized by the treewidth (and even feedback vertex set) of the augmented graph. Finally, we develop an FPT-algorithm for EDP by exploiting a novel structural parameter of the augmented graph.


2021 ◽  
pp. 314-326
Author(s):  
Ashwin Jacob ◽  
Diptapriyo Majumdar ◽  
Venkatesh Raman
Keyword(s):  

Author(s):  
Martin Kučera ◽  
Ondřej Suchý

AbstractThe Minimum Eccentricity Shortest Path Problem consists in finding a shortest path with minimum eccentricity in a given undirected graph. The problem is known to be NP-complete and W[2]-hard with respect to the desired eccentricity. We present fpt algorithms for the problem parameterized by the modular width, distance to cluster graph, the combination of distance to disjoint paths with the desired eccentricity, and maximum leaf number.


2020 ◽  
Vol 12 (1) ◽  
pp. 1-41
Author(s):  
Arijit Ghosh ◽  
Sudeshna Kolay ◽  
Gopinath Mishra

Algorithms ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 254
Author(s):  
Julien Baste ◽  
Lars Jaffke ◽  
Tomáš Masařík ◽  
Geevarghese Philip ◽  
Günter Rote

In this work, we study the d-Hitting Set and Feedback Vertex Set problems through the paradigm of finding diverse collections of r solutions of size at most k each, which has recently been introduced to the field of parameterized complexity. This paradigm is aimed at addressing the loss of important side information which typically occurs during the abstraction process that models real-world problems as computational problems. We use two measures for the diversity of such a collection: the sum of all pairwise Hamming distances, and the minimum pairwise Hamming distance. We show that both problems are fixed-parameter tractable in k + r for both diversity measures. A key ingredient in our algorithms is a (problem independent) network flow formulation that, given a set of ‘base’ solutions, computes a maximally diverse collection of solutions. We believe that this could be of independent interest.


Sign in / Sign up

Export Citation Format

Share Document