shortest path problem
Recently Published Documents


TOTAL DOCUMENTS

731
(FIVE YEARS 133)

H-INDEX

46
(FIVE YEARS 4)

Author(s):  
Edward Yuhang He ◽  
Natashia Boland ◽  
George Nemhauser ◽  
Martin Savelsbergh

Finding a shortest path in a network is a fundamental optimization problem. We focus on settings in which the travel time on an arc in the network depends on the time at which traversal of the arc begins. In such settings, reaching the destination as early as possible is not the only objective of interest. Minimizing the duration of the path, that is, the difference between the arrival time at the destination and the departure from the origin, and minimizing the travel time along the path from origin to destination, are also of interest. We introduce dynamic discretization discovery algorithms to efficiently solve such time-dependent shortest path problems with piecewise linear arc travel time functions. The algorithms operate on partially time-expanded networks in which arc costs represent lower bounds on the arc travel time over the subsequent time interval. A shortest path in this partially time-expanded network yields a lower bound on the value of an optimal path. Upper bounds are easily obtained as by-products of the lower bound calculations. The algorithms iteratively refine the discretization by exploiting breakpoints of the arc travel time functions. In addition to time discretization refinement, the algorithms permit time intervals to be eliminated, improving lower and upper bounds, until, in a finite number of iterations, optimality is proved. Computational experiments show that only a small fraction of breakpoints must be explored and that the fraction decreases as the length of the time horizon and the size of the network increases, making the algorithms highly efficient and scalable. Summary of Contribution: New data collection techniques have increased the availability and fidelity of time-dependent travel time information, making the time-dependent variant of the classic shortest path problem an extremely relevant problem in the field of operations research. This paper provides novel algorithms for the time-dependent shortest path problem with both the minimum duration and minimum travel time objectives, which aims to address the computational challenges faced by existing algorithms. A computational study shows that our new algorithm is indeed significantly more efficient than existing approaches.


Informatica ◽  
2021 ◽  
Vol 45 (7) ◽  
Author(s):  
Wei Wei ◽  
Weidong Yang ◽  
Heyang Xu

2021 ◽  
Author(s):  
Hao Li ◽  
Kun Zhang

Abstract In the field of graph theory, the shortest path problem is one of the most significant problems. However, since varieties of indeterminated factors appear in complex networks, determining of the shortest path from one vertex to another in complex networks may be a lot more complicated than the cases in deterministic networks. To illustrate this problem, the model of uncertain random digraph will be proposed via chance theory, in which some arcs exist with degrees in probability measure and others exist with degrees in uncertain measure. The main focus of this paper is to investigate the main properties of the shortest path in uncetain random digraph. Methods and algorithms are designed to calculate the distribution of shortest path more efficiently. Besides, some numerical examples are presented to show the efficiency of these methods and algorithms.


2021 ◽  
Author(s):  
Haoyu Zhu ◽  
Sheng Lin ◽  
Honghao Zhang ◽  
Wei Huang

Author(s):  
Hao Hu ◽  
Renata Sotirov

AbstractWe provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore–Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. We also present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem.


Author(s):  
Samir Dey ◽  
Sriza Malakar ◽  
Shibnath Rajak

Dijkstra algorithm is a widely used algorithm to find the shortest path between two specified nodes in a network problem. In this paper, a generalized fuzzy Dijkstra algorithm is proposed to find the shortest path using a new parameterized defuzzification method. Here, we address most important issue like the decision maker’s choice. A numerical example is used to illustrate the efficiency of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document