graph classes
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 115)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 68 (6) ◽  
pp. 1-33
Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Cyril Gavoille ◽  
Gwenaël Joret ◽  
Piotr Micek ◽  
...  

We show that there exists an adjacency labelling scheme for planar graphs where each vertex of an n -vertex planar graph G is assigned a (1 + o(1)) log 2 n -bit label and the labels of two vertices u and v are sufficient to determine if uv is an edge of G . This is optimal up to the lower order term and is the first such asymptotically optimal result. An alternative, but equivalent, interpretation of this result is that, for every positive integer n , there exists a graph U n with n 1+o(1) vertices such that every n -vertex planar graph is an induced subgraph of U n . These results generalize to a number of other graph classes, including bounded genus graphs, apex-minor-free graphs, bounded-degree graphs from minor closed families, and k -planar graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
K. A. Sugeng ◽  
Z. Z. Barack ◽  
N. Hinding ◽  
R. Simanjuntak

A modular irregular graph is a graph that admits a modular irregular labeling. A modular irregular labeling of a graph G of order n is a mapping of the set of edges of the graph to 1,2 , … , k such that the weights of all vertices are different. The vertex weight is the sum of its incident edge labels, and all vertex weights are calculated with the sum modulo n . The modular irregularity strength is the minimum largest edge label such that a modular irregular labeling can be done. In this paper, we construct a modular irregular labeling of two classes of graphs that are biregular; in this case, the regular double-star graph and friendship graph classes are chosen. Since the modular irregularity strength of the friendship graph also holds the minimal irregularity strength, then the labeling is also an irregular labeling with the same strength as the modular case.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Manuel Aprile ◽  
Samuel Fiorini ◽  
Tony Huynh ◽  
Gwenaël Joret ◽  
David R. Wood

Let $G$ be a connected $n$-vertex graph in a proper minor-closed class $\mathcal G$. We prove that the extension complexity of the spanning tree polytope of $G$ is $O(n^{3/2})$. This improves on the $O(n^2)$ bounds following from the work of Wong (1980) and Martin (1991). It also extends a result of Fiorini, Huynh, Joret, and Pashkovich (2017), who obtained a $O(n^{3/2})$ bound for graphs embedded in a fixed surface. Our proof works more generally for all graph classes admitting strongly sublinear balanced separators: We prove that for every constant $\beta$ with $0<\beta<1$, if $\mathcal G$ is a graph class closed under induced subgraphs such that all $n$-vertex graphs in $\mathcal G$ have balanced separators of size $O(n^\beta)$, then the extension complexity of the spanning tree polytope of every connected $n$-vertex graph in $\mathcal{G}$ is $O(n^{1+\beta})$. We in fact give two proofs of this result, one is a direct construction of the extended formulation, the other is via communication protocols. Using the latter approach we also give a short proof of the $O(n)$ bound for planar graphs due to Williams (2002).


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A paired dominating set $P$ is a dominating set with the additional property that $P$ has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph $G$ is called the upper domination number of $G$, denoted by $\Gamma(G)$, the maximum cardinality of a minimal paired dominating set in $G$ is called the upper paired domination number of $G$, denoted by $\Gamma_{pr}(G)$. By Henning and Pradhan (2019), we know that $\Gamma_{pr}(G)\leq 2\Gamma(G)$ for any graph $G$ without isolated vertices. We focus on the graphs satisfying the equality $\Gamma_{pr}(G)= 2\Gamma(G)$. We give characterizations for two special graph classes: bipartite and unicyclic graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ by using the results of Ulatowski (2015). Besides, we study the graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and a restricted girth. In this context, we provide two characterizations: one for graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and girth at least 6 and the other for $C_3$-free cactus graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$. We also pose the characterization of the general case of $C_3$-free graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ as an open question.


2021 ◽  
Vol 182 (3) ◽  
pp. 257-283
Author(s):  
Viet Dung Nguyen ◽  
Ba Thai Pham ◽  
Phan Thuan Do

We first design an 𝒪(n2) solution for finding a maximum induced matching in permutation graphs given their permutation models, based on a dynamic programming algorithm with the aid of the sweep line technique. With the support of the disjoint-set data structure, we improve the complexity to 𝒪(m+n). Consequently, we extend this result to give an 𝒪(m+n) algorithm for the same problem in trapezoid graphs. By combining our algorithms with the current best graph identification algorithms, we can solve the MIM problem in permutation and trapezoid graphs in linear and 𝒪(n2) time, respectively. Our results are far better than the best known 𝒪(mn) algorithm for the maximum induced matching problem in both graph classes, which was proposed by Habib et al.


2021 ◽  
Vol 42 ◽  
pp. 100673
Author(s):  
Yunus Emre Demirci ◽  
Tınaz Ekim ◽  
John Gimbel ◽  
Mehmet Akif Yıldız
Keyword(s):  

2021 ◽  
Vol 29 (2) ◽  
pp. 221-229
Author(s):  
SMITHA ROSE ◽  
SUDEV NADUVATH

In recent years, the notion of chromatic Zagreb indices has been introduced and studied for certain basic graph classes, as a coloring parallel of different Zagreb indices. A proper coloring C of a graph G, which assigns colors to the vertices of G such that the numbers of vertices in any two color classes differ by at most one, is called an equitable coloring of G. In this paper, we introduce the equitable chromatic Zagreb indices and equitable chromatic irregularity indices of some special classes of graphs called Mycielski graphs of paths and cycles.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Musa Demirci ◽  
Sadik Delen ◽  
Ahmet Sinan Cevik ◽  
Ismail Naci Cangul

A derived graph is a graph obtained from a given graph according to some predetermined rules. Two of the most frequently used derived graphs are the line graph and the total graph. Calculating some properties of a derived graph helps to calculate the same properties of the original graph. For this reason, the relations between a graph and its derived graphs are always welcomed. A recently introduced graph index which also acts as a graph invariant called omega is used to obtain such relations for line and total graphs. As an illustrative exercise, omega values and the number of faces of the line and total graphs of some frequently used graph classes are calculated.


Sign in / Sign up

Export Citation Format

Share Document