cepstral mean normalization
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
DEBASHISH DEV MISHRA ◽  
UTPAL BHATTACHARJEE ◽  
SHIKHAR KUMAR SARMA

The performance of automatic speaker recognition (ASR) system degrades drastically in the presence of noise and other distortions, especially when there is a noise level mismatch between the training and testing environments. This paper explores the problem of speaker recognition in noisy conditions, assuming that speech signals are corrupted by noise. A major problem of most speaker recognition systems is their unsatisfactory performance in noisy environments. In this experimental research, we have studied a combination of Mel Frequency Cepstral Coefficients (MFCC) for feature extraction and Cepstral Mean Normalization (CMN) techniques for speech enhancement. Our system uses a Gaussian Mixture Models (GMM) classifier and is implemented under MATLAB®7 programming environment. The process involves the use of speaker data for both training and testing. The data used for testing is matched up against a speaker model, which is trained with the training data using GMM modeling. Finally, experiments are carried out to test the new model for ASR given limited training data and with differing levels and types of realistic background noise. The results have demonstrated the robustness of the new system.


2011 ◽  
Vol 474-476 ◽  
pp. 349-354
Author(s):  
Jie Yang

A mismatch between the training and testing in noisy circumstance often causes a drastic decrease in the performance of speech recognition system. The robust feature coefficients might suppress this sensitivity of mismatch during the recognition stage. In this paper, we investigate the noise robustness of LPC Cepstral Coefficients (LPCC) by using speech enhancement with feature post-processing. At front-end, speech enhancement in the wavelet domain is used to remove noise components from noisy signals. This enhanced processing adopts the combination of discrete wavelet transform (DWT), wavelet packet decomposition (WPD), multi-thresholds processing etc to obtain the estimated speech. The feature post-processing employs cepstral mean normalization (CMN) to compensate the signal distortion and residual noise of enhanced signals in the cepstral domain. The performance of digit speech recognition systems is evaluated under noisy environments based on NOISEX-92 database. The experimental results show that the presented method exhibits performance improvements in the adverse noise environment compared with the previous features.


Sign in / Sign up

Export Citation Format

Share Document