vacuolar protein sorting
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 18)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Alvaro Soler-Garzón ◽  
Phillip E. McClean ◽  
Phillip N. Miklas

Bean common mosaic virus (BCMV) is a major disease in common bean (Phaseolus vulgaris L.). Host plant resistance is the most effective strategy to minimize crop damage against BCMV and the related Bean common mosaic necrosis virus (BCMNV). To facilitate breeding for resistance, we sought to identify candidate genes and develop markers for the bc-2 gene and the unknown gene with which it interacts. Genome-wide association study (GWAS) of the Durango Diversity Panel (DDP) identified a peak region for bc-2 on chromosome Pv11. Haplotype mapping narrowed the bc-2 genomic interval and identified Phvul.011G092700, a vacuolar protein-sorting 4 (Vps4) AAA+ ATPase endosomal sorting complexes required for transport (ESCRT) protein, as the bc-2 candidate gene. The race Durango Phvul.011G092700 gene model, bc-2[UI111], contains a 10-kb deletion, while the race Mesoamerican bc-2[Robust] consists of a single nucleotide polymorphism (SNP) deletion. Each mutation introduces a premature stop codon, and they exhibit the same interaction with the pathogroups (PGs) tested. Phvul.005G125100, another Vps4 AAA+ ATPase ESCRT protein, was identified as the candidate gene for the new recessive bc-4 gene, and the recessive allele is likely an amino acid substitution in the microtubule interacting and transport (MIT) domain. The two Vps4 AAA+ ATPase ESCRT proteins exhibit high similarity to the Zym Cucsa.385040 candidate gene associated with recessive resistance to Zucchini yellow mosaic virus in cucumber. bc-2 alone has no resistance effect but, when combined with bc-4, provides resistance to BCMV (except PG-V) but not BCMNV, and, when combined with bc-ud, provides resistance to BCMV (except BCMV PG-VII) and BCMNV. So instead of different resistance alleles (i.e., bc-2 and bc-22), there is only bc-2 with a differential reaction based on whether it is combined with bc-4 or bc-ud, which are tightly linked in repulsion. The new tools and enhanced understanding of this host-virus pathogen interaction will facilitate breeding common beans for resistance to BCMV and BCMNV.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110098
Author(s):  
Robert P. Skoff ◽  
Denise Bessert ◽  
Shreya Banerjee ◽  
Xixia Luo ◽  
Ryan Thummel

A founder mutation in human VPS11 ( Vacuolar Protein Sorting 11) was recently linked to a genetic leukoencephalopathy in Ashkenazi Jews that presents with the classical features of white matter disorders of the central nervous system (CNS). The neurological deficits include hypomyelination, hypotonia, gradual loss of vision, and seizures. However, the cells expressing the mutation were not identified. Here we describe, using immunocytochemistry, the strong expression of Vps11 in mouse oligodendrocytes and, specifically, its localization with Myelin Associated Glycoprotein (MAG) in the inner tongue of myelin. In longitudinal sections of myelin, it forms a bead-like structure, alternating with Myelin Basic Protein (MBP). Immunofluorescent staining with Vps11 and neurofilament proteins indicates the absence of Vps11 in axons in vivo. Finally, changes in Vps11 expression are associated with altered proteolipid protein (PLP) levels based upon mice with duplications or deletions of the Plp1 gene. To determine potential functional contributions of Vps11, we combined Vps11 with Platelet Derived Growth Factor Receptor-α (PDGFRα) in vitro and in vivo: in both conditions, co-localization of the two proteins was frequently found in round vesicles of OPCs/oligodendrocytes, suggesting retrograde transport for degradation by the endolysosomal system. Neuron-to-glial communication has been invoked to explain degenerative changes in myelin followed by degenerative changes in axons, and vice versa; but to our knowledge, no specific proteins in retrograde transport from the myelin inner tongue to oligodendrocyte perikarya have been identified. The identification of mutations in VPS11 and its localization at the axon-myelin interface should open new avenues of research.


2020 ◽  
Vol 319 (4) ◽  
pp. F592-F602
Author(s):  
Kit Yee Wong ◽  
Wei-Ling Wang ◽  
Shih-Han Su ◽  
Chin-Fu Liu ◽  
Ming-Jiun Yu

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for water reabsorption by the kidney collecting ducts. Under control conditions, most AQP2 resides in the recycling endosomes of principal cells, where it answers to vasopressin with trafficking to the apical plasma membrane to increase water reabsorption. Upon vasopressin withdrawal, apical AQP2 retreats to the early endosomes before joining the recycling endosomes for the next vasopressin stimulation. Prior studies have demonstrated a role of AQP2 S269 phosphorylation in reducing AQP2 endocytosis, thereby prolonging apical AQP2 retention. Here, we studied where in the cells S269 was phosphorylated and dephosphorylated in response to vasopressin versus withdrawal. In mpkCCD collecting cells, vacuolar protein sorting 35 knockdown slowed vasopressin-induced apical AQP2 trafficking, resulting in AQP2 accumulation in the recycling endosomes where S269 was phosphorylated. Rab7 knockdown, which impaired AQP2 trafficking from the early to recycling endosomes, reduced vasopressin-induced S269 phosphorylation. Rab5 knockdown, which impaired AQP2 endocytosis, did not affect vasopressin-induced S269 phosphorylation. Upon vasopressin withdrawal, S269 was not dephosphorylated in Rab5 knockdown cells. In contrast, S269 dephosphorylation upon vasopressin withdrawal was completed in Rab7 or vacuolar protein sorting 35 knockdown cells. We conclude that S269 is dephosphorylated during Rab5-mediated AQP2 endocytosis before AQP2 joins the recycling endosomes upon vasopressin withdrawal. While in the recycling endosomes, AQP2 can be phosphorylated at S269 in response to vasopressin before apical trafficking.


2020 ◽  
Vol 412 ◽  
pp. 116731
Author(s):  
Yasutake Tada ◽  
Tsuyoshi Hamaguchi ◽  
Yoshihisa Ikeda ◽  
Kazuo Iwasa ◽  
Yoshiaki Nishida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document