formal group law
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2018 ◽  
Vol 39 (9) ◽  
pp. 1400-1402
Author(s):  
I. I. Nekrasov


2016 ◽  
Vol 68 (2) ◽  
pp. 334-360 ◽  
Author(s):  
Oleg Demchenko ◽  
Alexander Gurevich

AbstractFontaine described the category of formal groups over the ring of Witt vectors over a finite field of characteristic p with the aid of triples consisting of the module of logarithms, the Dieudonné module, and the morphism from the former to the latter. We propose an explicit construction for the kernels in this category in term of Fontaine's triples. The construction is applied to the formal norm homomorphism in the case of an unramified extension of ℚp and of a totally ramiûed extension of degree less or equal than p. A similar consideration applied to a global extension allows us to establish the existence of a strict isomorphism between the formal norm torus and a formal group law coming from L-series.



2016 ◽  
Vol 12 (2) ◽  
pp. 299-304
Author(s):  
Malkhaz Bakuradze


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience If $f(x)$ is an invertible power series we may form the symmetric function $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ which is called a formal group law. We give a number of examples of power series $f(x)$ that are ordinary generating functions for combinatorial objects with a recursive structure, each of which is associated with a certain hypergraph. In each case, we show that the corresponding formal group law is the sum of the chromatic symmetric functions of these hypergraphs by finding a combinatorial interpretation for $f^{-1}(x)$. We conjecture that the chromatic symmetric functions arising in this way are Schur-positive. Si $f(x)$ est une série entière inversible, nous pouvons former la fonction symétrique $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ que nous appelons une loi de groupe formel. Nous donnons plusieurs exemples de séries entières $f(x)$ qui sont séries génératrices ordinaires pour des objets combinatoires avec une structure récursive, chacune desquelles est associée à un certain hypergraphe. Dans chaque cas, nous donnons une interprétation combinatoire à $f^{-1}(x)$, ce qui nous permet de montrer que la loi de groupe formel correspondante est la somme des fonctions symétriques chromatiques de ces hypergraphes. Nous conjecturons que les fonctions symétriques chromatiques apparaissant de cette manière sont Schur-positives.





2014 ◽  
Vol 14 (4) ◽  
pp. 837-855 ◽  
Author(s):  
Changlong Zhong

We study the action of the formal affine Hecke algebra on the formal group algebra, and show that the the formal affine Hecke algebra has a basis indexed by the Weyl group as a module over the formal group algebra. We also define a concept called the normal formal group law, which we use to simplify the relations of the generators of the formal affine Demazure algebra and the formal affine Hecke algebra.



Author(s):  
Leticia Zárate

AbstractWe study υ0- and υ1-divisibility properties of the [2e]-series associated to the universal 2-typical formal group law. This allows us to identify elements annihilating the toral class τ in BP*(2e × 2e). We conjecture that these elements form a minimal system of generators of the annihilator ideal of τ. This would provide a Landweber-type presentation for the BP-homology of 2e × 2e from which the relation hom:dimBP (Z2e × Z2e) = 2 would be an easy consequence.



Sign in / Sign up

Export Citation Format

Share Document