longitudinal fields
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Vol 17 (01) ◽  
pp. P01017
Author(s):  
Jingyu Dong ◽  
Ziwen Pan ◽  
Zebin Lin ◽  
Zhe Wang ◽  
Zhengyang He ◽  
...  

Abstract An Experimental Muon Source (EMuS) has been proposed to conduct muon spin rotation/relaxation/resonance (μSR) measurements at China Spallation Neutron Source (CSNS). To make better use of muons in each pulse, a highly segmented μSR spectrometer with more than 2000 detector channels is under design. Due to such high granularity of detectors, multiple counting events generated from particle scattering or spiral motion of positrons in a strong longitudinal field should be carefully considered in the design. According to the simulation, long scintillators have a good capability of angular discrimination. Detectors with cuboid geometries are better than those with frustum shapes. The cuboid detector with a length of 50 mm is longer enough to get the optimal range of discrimination angle. In a real μSR spectrometer, detectors can be placed parallelly along the beam direction or pointing to the sample. A figure of merit (FoM) has been proposed to compare such two arrangements by integrating their impacts on multiple counts and total counting loss in zero and longitudinal fields. The outstanding performance of multiple counting rejection due to the angular discrimination capability makes the pointing arrangement achieve much higher FoM. The simulation results can provide good support for the design of the highly segmented μSR spectrometer.


2021 ◽  
Author(s):  
Kayn A Forbes ◽  
Dale Green ◽  
Garth Andrew Jones

Nano Letters ◽  
2021 ◽  
Author(s):  
Mengjia Wang ◽  
Zhijin Huang ◽  
Roland Salut ◽  
Miguel Angel Suarez ◽  
Huihui Lu ◽  
...  

Author(s):  
Kayn A. Forbes ◽  
Dale Green ◽  
Garth A. Jones
Keyword(s):  

2021 ◽  
Vol 15 (2) ◽  
pp. 72-74
Author(s):  
Filippo Cardano ◽  
Lorenzo Marrucci
Keyword(s):  

2017 ◽  
Vol 119 (25) ◽  
Author(s):  
G. F. Quinteiro ◽  
Ferdinand Schmidt-Kaler ◽  
Christian T. Schmiegelow

Sign in / Sign up

Export Citation Format

Share Document