gramicidin channel
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 4)

H-INDEX

39
(FIVE YEARS 0)

Author(s):  
Delin Sun ◽  
Stewart He ◽  
W. F. Drew Bennett ◽  
Camille L. Bilodeau ◽  
Olaf S. Andersen ◽  
...  

2020 ◽  
Vol 63 (20) ◽  
pp. 11809-11818
Author(s):  
Delin Sun ◽  
Thasin A. Peyear ◽  
W. F. Drew Bennett ◽  
Matthew Holcomb ◽  
Stewart He ◽  
...  

2012 ◽  
Vol 1415 ◽  
Author(s):  
Azusa Oshima ◽  
Ayumi Hirano-Iwata ◽  
Yasuo Kimura ◽  
Michio Niwano

ABSTRACTIn this paper, we will discuss our recent approaches for improving the mechanical stability of free-standing bilayer lipid membranes (BLMs) by combining with BLM formation and microfabrication techniques. BLMs were prepared across a microaperture fabricated in a silicon (Si) chip and their mechanical stability and electric properties were investigated. BLMs suspended in a thin Si3N4 septum showed a dramatic improvement of BLM stability. The BLMs were resistant to voltage of ±1 V and the membrane lifetime was 15- ~40 h with and without incorporated channels. The membrane containing gramicidin channel exhibited tolerance to repetitive solution exchanges. At first, electric properties of the BLMs, such as noise level and current transient, were necessary to be improved. However, after coating the chip with insulator layers of Teflon and SiO2, total chip capacitance was reduced, leading to noise reduction (1-2 pA in peak-to-peak after low-pass filtering at 1 kHz) and elimination of current transients (< 0.5 ms). Since the vicinity of the aperture edge was remained uncoated, the BLMs formed in the Si chips still showed high mechanical stability after the insulator coatings. The mechanically stable BLMs having electric properties suitable for recording activities of biological channels will open up a variety of applications including high-throughput analysis of ion-channel proteins.


FEBS Letters ◽  
2011 ◽  
Vol 585 (19) ◽  
pp. 3101-3105 ◽  
Author(s):  
Helgi I. Ingólfsson ◽  
Roger E. Koeppe ◽  
Olaf S. Andersen

Biochemistry ◽  
2009 ◽  
Vol 48 (24) ◽  
pp. 5501-5503 ◽  
Author(s):  
Michael Weinrich ◽  
Tatiana K. Rostovtseva ◽  
Sergey M. Bezrukov

Sign in / Sign up

Export Citation Format

Share Document