water dimer
Recently Published Documents


TOTAL DOCUMENTS

516
(FIVE YEARS 46)

H-INDEX

75
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Saikat Mukherjee ◽  
Mario Barbatti

The problem associated with the zero-point energy (ZPE) leak in classical trajectory calculations is well known. Since ZPE is a manifestation of the quantum uncertainty principle, there are no restrictions on energy during the classical propagation of nuclei. This phenomenon can lead to unphysical results, such as forming products without the ZPE in the internal vibrational degrees of freedom (DOFs). The ZPE leakage also permits reactions below the quantum threshold for the reaction. We have developed a new Hessian-free method, inspired by the Lowe-Andersen thermostat model, to prevent energy dipping below a threshold in the local-pair (LP) vibrational DOFs. The idea is to pump the leaked energy to the corresponding local vibrational mode, taken from the other vibrational DOFs. We have applied the new correction protocol on the ab initio ground-state molecular dynamics simulation of the water dimer (H20)2, which dissociates due to unphysical ZPE spilling from the high-frequency OH modes. The LP-ZPE method has been able to prevent the ZPE spilling of the OH stretching modes by pumping back the leaked energy into the corresponding modes while this energy is taken from the other modes of the dimer itself, keeping the system as a microcanonical ensemble.


Author(s):  
Anna A. Simonova ◽  
Igor V. Ptashnik ◽  
Jonathan Elsey ◽  
Robert A. McPheat ◽  
Keith P. Shine ◽  
...  

2021 ◽  
Vol 154 (22) ◽  
pp. 224302
Author(s):  
Alberto Martín Santa Daría ◽  
Gustavo Avila ◽  
Edit Mátyus
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2275 ◽  
Author(s):  
Mirosław Jabłoński

The aim of this article is to present results of theoretical study on the properties of C⋯M bonds, where C is either a carbene or carbodiphosphorane carbon atom and M is an acidic center of MX2 (M = Be, Mg, Zn). Due to the rarity of theoretical data regarding the C⋯Zn bond (i.e., the zinc bond), the main focus is placed on comparing the characteristics of this interaction with C⋯Be (beryllium bond) and C⋯Mg (magnesium bond). For this purpose, theoretical studies (ωB97X-D/6-311++G(2df,2p)) have been performed for a large group of dimers formed by MX2 (X = H, F, Cl, Br, Me) and either a carbene ((NH2)2C, imidazol-2-ylidene, imidazolidin-2-ylidene, tetrahydropyrymid-2-ylidene, cyclopropenylidene) or carbodiphosphorane ((PH3)2C, (NH3)2C) molecule. The investigated dimers are characterized by a very strong charge transfer effect from either the carbene or carbodiphosphorane molecule to the MX2 one. This may even be over six times as strong as in the water dimer. According to the QTAIM and NCI method, the zinc bond is not very different than the beryllium bond, with both featuring a significant covalent contribution. However, the zinc bond should be definitely stronger if delocalization index is considered.


Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Hannes C. Gottschalk ◽  
Taija L. Fischer ◽  
Volker Meyer ◽  
Reinhard Hildebrandt ◽  
Ulrich Schmitt ◽  
...  

Fourier transform infrared (FTIR) absorption spectroscopy of cold molecules and clusters in supersonic slit jet expansions complements and extends more sensitive action spectroscopy techniques and provides important reference data for the latter. We describe how its major drawback, large substance and carrier gas consumption, can be alleviated by one to two orders of magnitude via direct and continuous recycling of the gas mixture. This is achieved by a combination of dry rotary lobe and screw pump compression. The signal-to-noise ratio is boosted by the established buffered giant gas pulse technique with full interferogram synchronization. The buildup of water impurities typically limits the recycling gain, but is turned into a feature for the study of hydrate complexes of volatile molecules. Continuous operation with a single gas filling over several days becomes practical and useful. Decadic absorbances in the low ppm range are detectable and the mid infrared range can be recorded simultaneously with the near infrared. The less straightforward hydration number assignment of spectral features in direct absorption spectroscopy is supported by a gradual water buildup at a rate of less than 0.5 mg/h. A recent reassignment proposal for the water dimer OH stretching spectrum is refuted and vibrational spectra of vacuum-isolated 18O-water clusters are presented for the first time. Methanol docking on asymmetric ketones is used to illustrate the advantages and limitations of the recycling concept. Previous assignments of the hydrate complex of 1-phenylethanol are confirmed. Additional features of the setup await testing and refinement, but the recycling technique already substantially widens the applicability of direct absorption spectroscopy of neutral molecular clusters. It may be attractive for other high-throughput jet spectrometers.


Author(s):  
Hannes Gottschalk ◽  
Taija Fischer ◽  
Volker Meyer ◽  
Reinhard Hildebrandt ◽  
Ulrich Schmitt ◽  
...  

Fourier transform infrared (FTIR) absorption spectroscopy of cold molecules and clusters in supersonic slit jet expansions complements and extends more sensitive action spectroscopy techniques and provides important reference data for the latter. We describe how its major drawback, large substance and carrier gas consumption, can be alleviated by one to two orders of magnitude via direct and continuous recycling of the gas mixture. This is achieved by a combination of dry rotary lobe and screw pump compression. The signal-to-noise ratio is boosted by the established buffered giant gas pulse technique with full interferogram synchronization. The buildup of water impurities typically limits the recycling gain, but is turned into a feature for the study of hydrate complexes of volatile molecules. Continuous operation with a single gas filling over several days becomes practical and useful. Decadic absorbances in the low ppm range are detectable and the mid infrared range can be recorded simultaneously with the near infrared. The less straightforward hydration number assignment of spectral features in direct absorption spectroscopy is supported by a gradual water buildup at a rate of less than 0.5 mg/h. A recent reassignment proposal for the water dimer OH stretching spectrum is refuted and vibrational spectra of vacuum-isolated 18O-water clusters are presented for the first time. Methanol docking on asymmetric ketones is used to illustrate the advantages and limitations of the recycling concept. Previous assignments of the hydrate complex of 1-phenylethanol are confirmed. Additional features of the setup await testing and refinement, but the recycling technique already substantially widens the applicability of direct absorption spectroscopy of neutral molecular clusters. It may be attractive for other high-throughput jet spectrometers.


2021 ◽  
Vol 12 (4) ◽  
pp. 1316-1320
Author(s):  
Iker León ◽  
Raúl Montero ◽  
Asier Longarte ◽  
José A. Fernández
Keyword(s):  

Author(s):  
Ernesto Quintas-Sánchez ◽  
Richard Dawes

The Born–Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later—despite astonishing advances in computational power—the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H2O)2, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document