pressure difference receiver
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2016 ◽  
Vol 13 (122) ◽  
pp. 20160560 ◽  
Author(s):  
Thorin Jonsson ◽  
Fernando Montealegre-Z ◽  
Carl D. Soulsbury ◽  
Kate A. Robson Brown ◽  
Daniel Robert

The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis . Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s −1 , an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls.


2004 ◽  
Vol 76 (2) ◽  
pp. 267-273 ◽  
Author(s):  
Ole N. Larsen

A bird needs to keep track not only of social interactions of conspecifics but also of their changing locations in space by determining their directions and distances. Current knowledge of accuracy in the computation of sound source location by birds is still insufficient, partly because physiological mechanisms of few species are studied in well defined laboratory settings, while field studies are performed in a variety of species and complex environments. Velocity gradients and reverberating surfaces may conceivably induce inaccuracy in sound source location (mainly elevation) by distorting the directional cues. However, most birds possess an inherently directional pressure difference receiver, which enhances the directional cues (mainly azimuth), and a computational mechanism in their auditory pathways to suppress echoes of redirected sound.


Sign in / Sign up

Export Citation Format

Share Document