physiological mechanisms
Recently Published Documents


TOTAL DOCUMENTS

1562
(FIVE YEARS 429)

H-INDEX

78
(FIVE YEARS 10)

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 169
Author(s):  
Jon M. Fukuto ◽  
Cristina Perez-Ternero ◽  
Jessica Zarenkiewicz ◽  
Joseph Lin ◽  
Adrian J. Hobbs ◽  
...  

S-Nitrosothiol (RS-NO) formation in proteins and peptides have been implicated as factors in the etiology of many diseases and as possible regulators of thiol protein function. They have also been proposed as possible storage forms of nitric oxide (NO). However, despite their proposed functions/roles, there appears to be little consensus regarding the physiological mechanisms of RS-NO formation and degradation. Hydropersulfides (RSSH) have recently been discovered as endogenously generated species with unique reactivity. One important reaction of RSSH is with RS-NO, which leads to the degradation of RS-NO as well as the release of NO. Thus, it can be speculated that RSSH can be a factor in the regulation of steady-state RS-NO levels, and therefore may be important in RS-NO (patho)physiology. Moreover, RSSH-mediated NO release from RS-NO may be a possible mechanism allowing RS-NO to serve as a storage form of NO.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Jyoti Sihag ◽  
Vincenzo Di Marzo

AbstractThe discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.


2022 ◽  
Vol 23 (2) ◽  
pp. 751
Author(s):  
Yu Gao ◽  
Xiaojiao Xiang ◽  
Yingxin Zhang ◽  
Yongrun Cao ◽  
Beifang Wang ◽  
...  

Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based cloning strategy, and verified this by complementation. The causal gene, OsPHD1, encodes a UDP-glucose epimerase (UGE), and the OsPHD1 was located in the chloroplast. OsPHD1 was constitutively expressed in all organs, with higher expression in leaves and other green tissues. lm212-1 exhibited decreased chlorophyll content, and the chloroplast structure was destroyed. Histochemistry results indicated that H2O2 is highly accumulated and cell death is occurred around the lesions in lm212-1. Compared to the wild type, expression levels of defense-related genes were up-regulated, and resistance to bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) was enhanced, indicating that the defense response was activated in lm212-1, ROS production was induced by flg22, and chitin treatment also showed the same result. Jasmonic acid (JA) and methyl jasmonate (MeJA) increased, and the JA signaling pathways appeared to be disordered in lm212-1. Additionally, the overexpression lines showed the same phenotype as the wild type. Overall, our findings demonstrate that OsPHD1 is involved in the regulation of PCD and defense response in rice.


Author(s):  
Kosha J. Mehta

AbstractAcademic achievement and cognitive functions are influenced by sleep and mood/emotion. In addition, several other factors affect learning. A coherent overview of the resultant interrelationships is essential but has not been presented till date. This unique and interdisciplinary review sits at the interface of physiology, psychology, and education. It compiles and critically examines the effects of sleep and mood on cognition and academic performance while including relevant conflicting observations. Moreover, it discusses the impact of several regulatory factors on learning, namely, age, gender, diet, hydration level, obesity, sex hormones, daytime nap, circadian rhythm, and genetics. Core physiological mechanisms that mediate the effects of these factors are described briefly and simplistically. The bidirectional relationship between sleep and mood is addressed. Contextual pictorial models that hypothesise learning on an emotion scale and emotion on a learning scale have been proposed. Essentially, convoluted associations between physiological and psychological factors, including sleep and mood that determine academic performance are recognised and affirmed. The emerged picture reveals far more complexity than perceived. It questions the currently adopted ‘one-size fits all’ approach in education and urges to envisage formulating bespoke strategies to optimise teaching-learning approaches while retaining uniformity in education. The information presented here can help improvise education strategies and provide better academic and pastoral support to students during their academic journey.


2022 ◽  
Vol 9 (1) ◽  
pp. 26
Author(s):  
Sai Naga Sri Harsha Chittajallu ◽  
Ashutosh Richhariya ◽  
Kwong Ming Tse ◽  
Viswanath Chinthapenta

Computational modelling of damage and rupture of non-connective and connective soft tissues due to pathological and supra-physiological mechanisms is vital in the fundamental understanding of failures. Recent advancements in soft tissue damage models play an essential role in developing artificial tissues, medical devices/implants, and surgical intervention practices. The current article reviews the recently developed damage models and rupture models that considered the microstructure of the tissues. Earlier review works presented damage and rupture separately, wherein this work reviews both damage and rupture in soft tissues. Wherein the present article provides a detailed review of various models on the damage evolution and tear in soft tissues focusing on key conceptual ideas, advantages, limitations, and challenges. Some key challenges of damage and rupture models are outlined in the article, which helps extend the present damage and rupture models to various soft tissues.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Virginia M. Artegoitia ◽  
J. W. Newman ◽  
A. P. Foote ◽  
S. D. Shackelford ◽  
D. A. King ◽  
...  

AbstractThe inter-cattle growth variations stem from the interaction of many metabolic processes making animal selection difficult. We hypothesized that growth could be predicted using metabolomics. Urinary biomarkers of cattle feed efficiency were explored using mass spectrometry-based untargeted and targeted metabolomics. Feed intake and weight-gain was measured in steers (n = 75) on forage-based growing rations (stage-1, 84 days) followed by high-concentrate finishing rations (stage-2, 84 days). Urine from days 0, 21, 42, 63, and 83 in each stage were analyzed from steers with the greater (n = 14) and least (n = 14) average-daily-gain (ADG) and comparable dry-matter-intake (DMI; within 0.32 SD of the mean). Steers were slaughtered after stage-2. Adjusted fat-thickness and carcass-yield-grade increased in greater-ADG-cattle selected in stage-1, but carcass traits did not differ between ADG-selected in stage-2. Overall 85 untargeted metabolites segregated greater- and least-ADG animals, with overlap across diets (both stages) and breed type, despite sampling time effects. Total 18-bile acids (BAs) and 5-steroids were quantified and associated with performance and carcass quality across ADG-classification depending on the stage. Stepwise logistic regression of urinary BA and steroids had > 90% accuracy identifying efficient-ADG-steers. Urine metabolomics provides new insight into the physiological mechanisms and potential biomarkers for feed efficiency.


2022 ◽  
pp. 173-194
Author(s):  
Asha Kumari ◽  
Binny Sharma ◽  
Bansh Narayan Singh ◽  
Akash Hidangmayum ◽  
Hanuman Singh Jatav ◽  
...  

Author(s):  
Quin E. Denfeld ◽  
S. Albert Camacho ◽  
Nathan Dieckmann ◽  
Shirin O. Hiatt ◽  
Mary Roberts Davis ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1914
Author(s):  
Irina P. Voronova

The present review summarizes the data concerning the influence of serotonin (5-HT) receptors on body temperature in warm-blooded animals and on processes associated with its maintenance. This review includes the most important part of investigations from the first studies to the latest ones. The established results on the pharmacological activation of 5-HT1A, 5-HT3, 5-HT7 and 5-HT2 receptor types are discussed. Such activation of the first 3 type of receptors causes a decrease in body temperature, whereas the 5-HT2 activation causes its increase. Physiological mechanisms leading to changes in body temperature as a result of 5-HT receptors’ activation are discussed. In case of 5-HT1A receptor, they include an inhibition of shivering and non-shivering thermogenesis, as well simultaneous increase of peripheral blood flow, i.e., the processes of heat production and heat loss. The physiological processes mediated by 5-HT2 receptor are opposite to those of the 5-HT1A receptor. Mechanisms of 5-HT3 and 5-HT7 receptor participation in these processes are yet to be studied in more detail. Some facts indicating that in natural conditions, without pharmacological impact, these 5-HT receptors are important links in the system of temperature homeostasis, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document