type invariant
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 58 (4) ◽  
pp. 505-558

We introduce a Floer homotopy version of the contact invariant introduced by Kronheimer–Mrowka–Ozsváth–Szabó. Moreover, we prove a gluing formula relating our invariant with the first author’s Bauer–Furuta type invariant, which refines Kronheimer–Mrowka’s invariant for 4-manifolds with contact boundary. As an application, we give a constraint for a certain class of symplectic fillings using equivariant KO-cohomology.


2020 ◽  
pp. 1-28
Author(s):  
Gwénaël Massuyeau ◽  
Delphine Moussard

Abstract We prove a “splicing formula” for the LMO invariant, which is the universal finite-type invariant of rational homology three-spheres. Specifically, if a rational homology three-sphere M is obtained by gluing the exteriors of two framed knots $K_1 \subset M_1$ and $K_2\subset M_2$ in rational homology three-spheres, our formula expresses the LMO invariant of M in terms of the Kontsevich–LMO invariants of $(M_1,K_1)$ and $(M_2,K_2)$ . The proof uses the techniques that Bar-Natan and Lawrence developed to obtain a rational surgery formula for the LMO invariant. In low degrees, we recover Fujita’s formula for the Casson–Walker invariant, and we observe that the second term of the Ohtsuki series is not additive under “standard” splicing. The splicing formula also works when each $M_i$ comes with a link $L_i$ in addition to the knot $K_i$ , hence we get a “satellite formula” for the Kontsevich–LMO invariant.


Author(s):  
Thomas Machon

If the vorticity field of an ideal fluid is tangent to a foliation, additional conservation laws arise. For a class of zero-helicity vorticity fields, the Godbillon-Vey (GV) invariant of foliations is defined and is shown to be an invariant purely of the vorticity, becoming a higher-order helicity-type invariant of the flow. GV ≠ 0 gives both a global topological obstruction to steady flow and, in a particular form, a local obstruction. GV is interpreted as helical compression and stretching of vortex lines. Examples are given where the value of GV is determined by a set of distinguished closed vortex lines.


2020 ◽  
Vol 70 (3) ◽  
pp. 1029-1084
Author(s):  
Leo Benard ◽  
Anthony Conway
Keyword(s):  

2020 ◽  
Vol 9 ◽  
pp. 100130 ◽  
Author(s):  
Sheikh Nooruddin ◽  
Md. Milon Islam ◽  
Falguni Ahmed Sharna

Sign in / Sign up

Export Citation Format

Share Document