ideal fluid
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 69)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 3 (2) ◽  
pp. 75-87
Author(s):  
О. Lymar ◽  

The frequency spectrum of plane vibrations of an elastic plate separating a two-layer ideal fluid with a free surface in a rectangular channel is investigated analytically and numerically. For an arbitrary fixing of the contours of a rectangular plate, it is shown that the frequency spectrum of the problem under consideration consists of two sets of frequencies describing the vibrations of the free surface of the liquid and the elastic plate. The equations of coupled vibrations of the plate and the fluid are presented using a system of integro-differential equations with the boundary conditions for fixing the contours of the plate and the condition for the conservation of the volume of the fluid. When solving a boundary value problem for eigenvalues, the shape of the plate deflection is represented by the sum of the fundamental solutions of a homogeneous equation for a loose plate and a partial solution of an inhomogeneous equation by expanding in terms of eigenfunctions of oscillations of an ideal fluid in a rectangular channel. The frequency equation of free compatible vibrations of a plate and a liquid is obtained in the form of a fourth-order determinant. In the case of a clamped plate, its simplification is made and detailed numerical studies of the first and second sets of frequencies from the main mechanical parameters of the system are carried out. A weak interaction of plate vibrations on vibrations of the free surface and vice versa is noted. It is shown that with a decrease in the mass of the plate, the frequencies of the second set increase and take the greatest value for inertialess plates or membranes. A decrease in the frequencies of the second set occurs with an increase in the filling depth of the upper liquid or a decrease in the filling depth of the lower liquid. Taking into account two terms of the series in the frequency equation, approximate formulas for the second set of frequencies are obtained and their efficiency is shown. With an increase in the number of terms in the series of the frequency equation, the previous roots of the first and second sets are refined and new ones appear.


2021 ◽  
Author(s):  
Владислав Хаблов

In this paper we analyze the asymptotics of the Schrödinger equation solutions with respect to a small parameter ~. It is well known, that short- waveasymptoticstosolutionsofthisequationleadstothepairofequations— the Hamilton–Jacobi equation for the phase and the continuity equation. These equations coincide with the ones for the potential flows of an ideal fluid. The wave function is invariant with respect to the complex plane rotations group, and the asymptotics is constructed as a point-dependent action of this group on some function that is found by solving the transfer equation. It is shown in the paper, that if the Heisenberg group is used instead of the rotation group, then the limit of the equations solutions with ~ tending to zero leads to the equations for vortex flows of an ideal fluid in a potential field of forces. If the original Schrödinger equation is nonlinear, then equations for barotropic processes in an ideal fluid are obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Huijing Zhan ◽  
Mingze Wu

In order to solve the numerical method of nonconservative ideal hydrodynamics equations, the viscous perturbation technique for solving nonconservative hydrodynamics equations is improved and tested by solving the Riemann problem. The calculation of nonconservative ideal fluid mechanics is based on the GRP format. This article aims at the calculation method of nonconservative ideal fluid mechanics in the GRP format. Riemann and the corresponding periodic vortex are processed. The multifluid network processing method in the article is compared with the current method. The result can prove that this format can be used to solve the nonconservative ideal fluid dynamics equation of multiple values in the GRP format group, its computing power is strong, and the result of the solution is accurate.


2021 ◽  
Author(s):  
Anna Karczewska ◽  
Piotr Rozmej

Abstract We study the problem of gravity surface wa\-ves for the ideal fluid model in (2+1)-dimensional case. We apply a systematic procedure for deriving the Boussinesq equations for a prescribed relationship between the orders of four expansion parameters, the amplitude parameter $\alpha$, the long-wavelength parameter $\beta$, the transverse wavelength parameter $\gamma$, and the bottom variation parameter $\delta$. We also take into account surface tension effects when relevant. For all considered cases, the (2+1)-dimensional Boussinesq equations can not be reduced to a single nonlinear wave equation for surface elevation function. On the other hand, they can be reduced to a single, highly nonlinear partial differential equation for an auxiliary function $f(x,y,t)$ which determines the velocity potential but is not directly observed quantity. The solution $f$ of this equation, if known, determines the surface elevation function. We also show that limiting the obtained the Boussinesq equations to (1+1)-dimensions one recovers well-known cases of the KdV, extended KdV, fifth-order KdV, and Gardner equations.PACS 02.30.Jr · 05.45.-a · 47.35.Bb · 47.35.Fg


2021 ◽  
Vol 163 (A3) ◽  
Author(s):  
E Amromin

Numerous experiments with ship drag reduction by air bottom cavitation in diverse countries have exhibited very different achievements. Therefore, a paper clarifying mechanics of this drag reduction and describing the proven design algorithms is appropriate.  Solutions of an ideal fluid problem existing in diverse ranges of Froude number are compared and the solutions suitable for ship drag reduction are considered in more detail. It is emphasized in this paper that a cavity locker at the trailing edge of the bottom niche (recess) assigned for the cavity is necessary to reduce the necessary air supply to the cavity and to mitigate the cavity tail pulsation resulting in a drag penalty. It is also pointed out that the bottom niche depth must allow for cavity withstanding under impact of waves in seaways. Bottom cavitation may even reduce wave-induced loads on the hull. With taking into account the above-mentioned design aspects, the energy spent on the air supply can be minimized. An algorithm of bottom design based on ideal fluid theory is also explained in the paper. Comparisons with several model test results are provided to illustrate the algorithm employment.


Sign in / Sign up

Export Citation Format

Share Document