counting function
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 55)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
JULIEN MAYRAND ◽  
CHARLES SENÉCAL ◽  
SIMON ST–AMANT

Abstract We consider the three-dimensional sloshing problem on a triangular prism whose angles with the sloshing surface are of the form ${\pi}/{2q}$ , where q is an integer. We are interested in finding a two-term asymptotic expansion of the eigenvalue counting function. When both angles are ${\pi}/{4}$ , we compute the exact value of the second term. As for the general case, we conjecture an asymptotic expansion by constructing quasimodes for the problem and computing the counting function of the related quasi-eigenvalues. These quasimodes come from solutions of the sloping beach problem and correspond to two kinds of waves, edge waves and surface waves. We show that the quasi-eigenvalues are exponentially close to real eigenvalues of the sloshing problem. The asymptotic expansion of their counting function is closely related to a lattice counting problem inside a perturbed ellipse where the perturbation is in a sense random. The contribution of the angles can then be detected through that perturbation.


2021 ◽  
Vol 17 (2) ◽  
pp. 5-18
Author(s):  
V. Ďuriš ◽  
T. Šumný ◽  
T. Lengyelfalusy

Abstract Skewes’ number was discovered in 1933 by South African mathematician Stanley Skewes as upper bound for the first sign change of the difference π (x) − li(x). Whether a Skewes’ number is an integer is an open problem of Number Theory. Assuming Schanuel’s conjecture, it can be shown that Skewes’ number is transcendental. In our paper we have chosen a different approach to prove Skewes’ number is an integer, using lattice points and tangent line. In the paper we acquaint the reader also with prime numbers and their use in RSA coding, we present the primary algorithms Lehmann test and Rabin-Miller test for determining the prime numbers, we introduce the Prime Number Theorem and define the prime-counting function and logarithmic integral function and show their relation.


2021 ◽  
Vol 27 (4) ◽  
pp. 25-31
Author(s):  
Sadani Idir ◽  

Our objective in this paper is to study a particular set of prime numbers, namely \ left \ {p \ in \ mathbb {P} \ \ text {and} \ \ pi (p) \ notin \ mathbb {P} \ right \} \ !.As a consequence, estimations of the form \ sum {f (p)}with p being prime belonging to this set are derived.


2021 ◽  
Vol 27 (4) ◽  
pp. 149-153
Author(s):  
József Sándor ◽  

We study certain inequalities for the prime counting function π(x). Particularly, a new proof and a refinement of an inequality from [1] is provided.


2021 ◽  
Vol 56 (1) ◽  
pp. 48-54
Author(s):  
Ya.I. Savchuk ◽  
A.I. Bandura

We introduce a concept of asymptotic vector of an entire curve with linearly independent components and without common zeros and investigate a relationship between the asymptotic vectors and the Picard exceptional vectors. A non-zero vector $\vec{a}=(a_1,a_2,\ldots,a_p)\in \mathbb{C}^{p}$ is called an asymptotic vector for the entire curve $\vec{G}(z)=(g_1(z),g_2(z),\ldots,g_p(z))$ if there exists a continuous curve $L: \mathbb{R}_+\to \mathbb{C}$ given by an equation $z=z\left(t\right)$, $0\le t<\infty $, $\left|z\left(t\right)\right|<\infty $, $z\left(t\right)\to \infty $ as $t\to \infty $ such that$$\lim\limits_{\stackrel{z\to\infty}{z\in L}} \frac{\vec{G}(z)\vec{a} }{\big\|\vec{G}(z)\big\|}=\lim\limits_{t\to\infty} \frac{\vec{G}(z(t))\vec{a} }{\big\|\vec{G}(z(t))\big\|} =0,$$ where $\big\|\vec{G}(z)\big\|=\big(|g_1(z)|^2+\ldots +|g_p(z)|^2\big)^{1/2}$, $\vec{G}(z)\vec{a}=g_1(z)\cdot\bar{a}_1+g_2(z)\cdot\bar{a}_2+\ldots+g_p(z)\cdot\bar{a}_p$. A non-zero vector $\vec{a}=(a_1,a_2,\ldots,a_p)\in \mathbb{C}^{p}$ is called a Picard exceptional vector of an entire curve $\vec{G}(z)$ if the function $\vec{G}(z)\vec{a}$ has a finite number of zeros in $\left\{\left|z\right|<\infty \right\}$. We prove that any Picard exceptional vector of transcendental entire curve with linearly independent com\-po\-nents and without common zeros is an asymptotic vector.Here we de\-mon\-stra\-te that the exceptional vectors in the sense of Borel or Nevanlina and, moreover, in the sense of Valiron do not have to be asymptotic. For this goal we use an example of meromorphic function of finite positive order, for which $\infty $ is no asymptotic value, but it is the Nevanlinna exceptional value. This function is constructed in known Goldberg and Ostrovskii's monograph``Value Distribution of Meromorphic Functions''.Other our result describes sufficient conditions providing that some vectors are asymptotic for transcendental entire curve of finite order with linearly independent components and without common zeros. In this result, we require that the order of the Nevanlinna counting function for this curve and for each such a vector is less than order of the curve.At the end of paper we formulate three unsolved problems concerning asymptotic vectors of entire curve.


Author(s):  
Marco Cantarini ◽  
Alessandro Gambini ◽  
Alessandro Zaccagnini

Let [Formula: see text] be the von Mangoldt function, let [Formula: see text] be an integer and let [Formula: see text] be the counting function for the Goldbach numbers with summands in arithmetic progression modulo a common integer [Formula: see text]. We prove an asymptotic formula for the weighted average, with Cesàro weight of order [Formula: see text], with [Formula: see text], of this function. Our result is uniform in a suitable range for [Formula: see text].


Author(s):  
Jan Feliksiak

This research paper aims to explicate the complex issue of the Riemann's Hypothesis and ultimately presents its elementary proof. The method implements one of the binomial coefficients, to demonstrate the maximal prime gaps bound. Maximal prime gaps bound constitutes a comprehensive improvement over the Bertrand's result, and becomes one of the key elements of the theory. Subsequently, implementing the theory of the primorial function and its error bounds, an improved version of the Gauss' offset logarithmic integral is developed. This integral serves as a Supremum bound of the prime counting function Pi(n). Due to its very high precision, it permits to verify the relationship between the prime counting function Pi(n) and the offset logarithmic integral of Carl Gauss. The collective mathematical theory, via the Niels F. Helge von Koch equation, enables to prove the RIemann's Hypothesis conclusively.


Author(s):  
Franco Pavese

The VIM3 defines a quantity as a “property of a phenomenon, body, or substance”, leaving the characteristics of the term ‘quantity’, related to the chosen characteristics of the relevant properties. The question is: does necessarily a property also necessarily refer to the possible granularity of a phenomenon, body, or substance? Take, for example, for the quantity “mass”: it does not always have to take into account whether or not a phenomenon, body, or substance is subdivided into discrete entities? It depends of the frame of the analysis and also on the chosen measurement unit. In other cases, like temperature, the macroscopic properties are related to the statistical properties of granular substances like atoms and molecules are, so the present meaning of ‘temperature’ is generally lost at the numerical level where the entity’s statistics become meaningless. Yet another case is quantum physics. The paper illustrates the issue and possible solutions under development. Keywords: continuous; granular; quantity; magnitude; quanta; integer number; real number; counting; function


Sign in / Sign up

Export Citation Format

Share Document