traffic flow forecast
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 19)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Liangyu Yao ◽  
Jianmin Bao ◽  
Fei Ding ◽  
Nianqi Zhang ◽  
En Tong

2021 ◽  
Vol 1910 (1) ◽  
pp. 012035
Author(s):  
Shurong Hao ◽  
Mingming Zhang ◽  
Anping Hou

2021 ◽  
Vol 1852 (2) ◽  
pp. 022076
Author(s):  
Yunxiang Li ◽  
Guochang Liu ◽  
Yingying Cheng ◽  
Jifei Wu ◽  
Yongyi Xiong ◽  
...  

Author(s):  
Zhaoyue Zhang ◽  
An Zhang ◽  
Cong Sun ◽  
Shuaida Xiang ◽  
Jichen Guan ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ya Zhang ◽  
Mingming Lu ◽  
Haifeng Li

Traffic forecasting is an important prerequisite for the application of intelligent transportation systems in urban traffic networks. The existing works adopted RNN and CNN/GCN, among which GCRN is the state-of-the-art work, to characterize the temporal and spatial correlation of traffic flows. However, it is hard to apply GCRN to the large-scale road networks due to high computational complexity. To address this problem, we propose abstracting the road network into a geometric graph and building a Fast Graph Convolution Recurrent Neural Network (FastGCRNN) to model the spatial-temporal dependencies of traffic flow. Specifically, we use FastGCN unit to efficiently capture the topological relationship between the roads and the surrounding roads in the graph with reducing the computational complexity through importance sampling, combine GRU unit to capture the temporal dependency of traffic flow, and embed the spatiotemporal features into Seq2Seq based on the Encoder-Decoder framework. Experiments on large-scale traffic data sets illustrate that the proposed method can greatly reduce computational complexity and memory consumption while maintaining relatively high accuracy.


Sign in / Sign up

Export Citation Format

Share Document