cladistic taxonomy
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1674-1682 ◽  
Author(s):  
Jason C. Hong ◽  
M. Timur Momol ◽  
Jeffrey B. Jones ◽  
Pingsheng Ji ◽  
Stephen M. Olson ◽  
...  

The discovery of exotic Ralstonia solanacearum biovar 1 strains on geranium in north Florida led to a concern that this strain may have become established. Therefore, we monitored irrigation ponds and potential alternative aquatic weeds from 2002 to 2005 for the presence of this strain. We report that this strain, possibly originating from the Caribbean, has become established in several ponds in Gadsden County, FL. Cladistic taxonomy was used to subclassify the bacterium at the species level into four groups or phylotypes based on multiplex polymerase chain reaction of the internal transcribed spacer (ITS) region. The bacterium was further divided into sequevars by sequencing the endoglucanase gene (egl). The strains were determined to belong to phylotype II/sequevar 4 NPB (nonpathogenic on banana) that was recently reported in Martinique. Partial sequencing of the egl followed by phylogenetic analysis placed the new Caribbean strains in a different clade than the typical Florida endemic strains. Pulsed-field gel electrophoresis (PFGE) revealed different haplotypes upon comparison of the collected pond strains and the Floridian strains. Based on PFGE polymorphism, egl sequencing, and phylogenetic analysis, the Caribbean strains were shown to be identical to the strain isolated from infected geranium plants. Experiments were undertaken to monitor R. solanacearum in irrigation ponds and associated weeds. R. solanacearum was detected in surface-disinfested common aquatic weeds growing in the irrigation ponds, including Hydrocotyle ranunculoides (dollar weed) and Polygonum pennsylvanicum (Pennsylvania smart weed). Both weeds were latently infected and showed no signs of wilt when collected. Two different Hydrocotyle spp. were artificially inoculated with R. solanacearum under greenhouse conditions and both developed symptoms 14 days post inoculation (dpi) and the bacterium was recovered from the tissues 42 dpi. There was a positive correlation between ambient temperature and R. solanacearum populations in irrigation water, as previously shown by other researchers.


1992 ◽  
Vol 6 ◽  
pp. 148-148
Author(s):  
Christine Janis

The introduction of cladistic techniques in phylogenetic systematics have revolutionized many concepts in mammalian taxonomy: most notably, many early groups have been relegated to the status of paraphyletic or polyphyletic assemblages (e.g. the “Condylarthra” or “stem ungulates” and the “Proteutheria” insectivorans.). While it is important to recognize truly polyphyletic groups (e.g. the “Amblypoda” or Paleogene “pachyderm” analogs), all non-monophyletic groups are now commonly assigned to a similar “wastebasket” status, rendering all events associated with their evolution as “pseudo-events” on the grounds of taxonomic impurity.I am uncomfortable with this tendency for two reasons. The first is philosophical. Monophyly is a time-dependent system of classification: all taxa were monophyletic at their inception and the more successful (i.e. generative) ones must inevitably pass into paraphyly. Cladistic taxonomy claims to be independent of stratigraphic bias, but seemingly has no problem with using an arbitrary cut-off point in the geological record (the Recent) as a means of imposing taxonomic nomenclature. The second is for practical reasons concerning information contained in many of these paraphyletic taxa that is relevant to issues other than phylogenetic systematics.I examine closely the evolutionary histories of early Paleogene “miacoid” carnivores and late Paleogene “gelocid” artiodactyls. The extinction of miacoid species in the Late Eocene (giving rise to families of larger, apparently more actively hunting carnivores) and the extinction of gelocid species in the Late Oligocene (giving rise to families of larger ruminants apparently better equipped to ingest and process fibrous vegetation) were both coincident with major climatic and environmental changes. The change from non-seasonal to seasonal climates in the Northern hemisphere in the late Eocene may have influenced a change in predator adaptive strategies; likewise, the drying trend and spread of more open habitats in the early Neogene may have influenced ruminant foraging strategies. I submit that while not all paraphylectic groups may be useful in this fashion, at least in the above instances much paleobiological information is lost if these groups are dismissed because of their paraphyletic status: their demise reflects not artificial “pseudoextinction” but rather a real loss of archaic adaptations in a changing world.


Taxon ◽  
1988 ◽  
Vol 37 (2) ◽  
pp. 387-388
Author(s):  
J. Bastow Wilson
Keyword(s):  

Taxon ◽  
1988 ◽  
Vol 37 (2) ◽  
pp. 388-390
Author(s):  
C. J. Humphries ◽  
P. Y. Ladiges
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document