multiplicative regularization
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 1)

Geophysics ◽  
2021 ◽  
pp. 1-44
Author(s):  
Aria Abubakar ◽  
Haibin Di ◽  
Zhun Li

Three-dimensional seismic interpretation and property estimation is essential to subsurface mapping and characterization, in which machine learning, particularly supervised convolutional neural network (CNN) has been extensively implemented for improved efficiency and accuracy in the past years. In most seismic applications, however, the amount of available expert annotations is often limited, which raises the risk of overfitting a CNN particularly when only seismic amplitudes are used for learning. In such a case, the trained CNN would have poor generalization capability, causing the interpretation and property results of obvious artifacts, limited lateral consistency and thus restricted application to following interpretation/modeling procedures. This study proposes addressing such an issue by using relative geologic time (RGT), which explicitly preserves the large-scale continuity of seismic patterns, to constrain a seismic interpretation and/or property estimation CNN. Such constrained learning is enforced in twofold: (1) from the perspective of input, the RGT is used as an additional feature channel besides seismic amplitude; and more innovatively (2) the CNN has two output branches, with one for matching the target interpretation or properties and the other for reconstructing the RGT. In addition is the use of multiplicative regularization to facilitate the simultaneous minimization of the target-matching loss and the RGT-reconstruction loss. The performance of such an RGT-constrained CNN is validated by two examples, including facies identification in the Parihaka dataset and property estimation in the F3 Netherlands dataset. Compared to those purely from seismic amplitudes, both the facies and property predictions with using the proposed RGT constraint demonstrate significantly reduced artifacts and improved lateral consistency throughout a seismic survey.


2021 ◽  
Vol 186 ◽  
pp. 104263
Author(s):  
Kangkang Guo ◽  
Jingye Li ◽  
Xiaohong Chen ◽  
Wuyang Yang ◽  
Guang Zhu ◽  
...  

2020 ◽  
Author(s):  
Nozhan Bayat ◽  
Puyan Mojabi

The standard weighted L2 norm total variation multiplicative regularization (MR) term originally developed for microwave imaging algorithms is modified to take into account<br>structural prior information, also known as spatial priors (SP), about the object being imaged. This modification adds one extra term to the integrand of the standard MR, thus, being referred to as an augmented MR (AMR). The main advantage of the proposed approach is that it requires a minimal change to the existing microwave imaging algorithms that are already equipped with the MR. Using two experimental data sets, it is shown that the proposed AMR (i) can handle partial SP, and (ii) can, to some extent, enhance the quantitative accuracy achievable from<br>microwave imaging.


2020 ◽  
Author(s):  
Nozhan Bayat ◽  
Puyan Mojabi

The standard weighted L2 norm total variation multiplicative regularization (MR) term originally developed for microwave imaging algorithms is modified to take into account<br>structural prior information, also known as spatial priors (SP), about the object being imaged. This modification adds one extra term to the integrand of the standard MR, thus, being referred to as an augmented MR (AMR). The main advantage of the proposed approach is that it requires a minimal change to the existing microwave imaging algorithms that are already equipped with the MR. Using two experimental data sets, it is shown that the proposed AMR (i) can handle partial SP, and (ii) can, to some extent, enhance the quantitative accuracy achievable from<br>microwave imaging.


2020 ◽  
Author(s):  
Nozhan Bayat ◽  
Puyan Mojabi

The standard weighted L2 norm total variation multiplicative regularization (MR) term originally developed for microwave imaging algorithms is modified to take into account<br>structural prior information, also known as spatial priors (SP), about the object being imaged. This modification adds one extra term to the integrand of the standard MR, thus, being referred to as an augmented MR (AMR). The main advantage of the proposed approach is that it requires a minimal change to the existing microwave imaging algorithms that are already equipped with the MR. Using two experimental data sets, it is shown that the proposed AMR (i) can handle partial SP, and (ii) can, to some extent, enhance the quantitative accuracy achievable from<br>microwave imaging.


Sign in / Sign up

Export Citation Format

Share Document