horizon effect
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Junkee Jeon ◽  
Minsuk Kwak ◽  
Kyunghyun Park

2020 ◽  
Author(s):  
Olivier Dessaint ◽  
Thierry Foucault ◽  
Laurent Frésard

2019 ◽  
Vol 621 ◽  
pp. A113 ◽  
Author(s):  
G. Fischer ◽  
J. A. Pagaran ◽  
P. Zarka ◽  
M. Delcroix ◽  
U. A. Dyudina ◽  
...  

Lightning storms in Saturn’s atmosphere can last for a few days up to several months. In this paper we analyze a lightning storm that raged for seven and a half months at a planetocentric latitude of 35° south from the end of November 2007 until mid-July 2008. Thunderstorms observed by the Cassini spacecraft before this time were characterized by a single convective storm region of ~2000 km in size, but this storm developed two distinct convective storm cells at the same latitude separated by ~25° in longitude. The second storm cell developed in March 2008, and the entire two-cell convective system was moving with a westward drift velocity of about 0.35 deg per day, which differs from the zonal wind speed. An exhaustive data analysis shows that the storm system produced ~277000 lightning events termed Saturn electrostatic discharges (SEDs) that were detected by Cassini’s Radio and Plasma Wave Science (RPWS) instrument, and they occurred in 439 storm episodes. We analyzed the SED intensity distributions, the SED polarization, the burst rates, and the burst and episode durations. During this storm Cassini made several orbits around Saturn and observed the SEDs from all local times. A comparison with optical observations shows that SEDs can be detected when the storm is still beyond the visible horizon. We qualitatively describe this so-called over-the-horizon effect which is thought to be due to a temporary trapping of SED radio waves below Saturn’s ionosphere. We also describe the first occurrence of so-called SED pre- and post-episodes, which occur in a limited frequency range around 4 MHz separated from the main episode. Pre- and post-episodes were mostly observed by Cassini located at local noon, and should be a manifestation of an extreme over-the-horizon effect. Combined radio and imaging observations suggest that some decreases in SED activity are caused by splitting of the thunderstorm into a bright cloud and a dark oval.


Chemosphere ◽  
2018 ◽  
Vol 207 ◽  
pp. 183-191 ◽  
Author(s):  
Hugo Campos Pereira ◽  
Malin Ullberg ◽  
Dan Berggren Kleja ◽  
Jon Petter Gustafsson ◽  
Lutz Ahrens

ICGA Journal ◽  
2015 ◽  
Vol 38 (2) ◽  
pp. 124-124
Author(s):  
David Levy
Keyword(s):  

2013 ◽  
Vol 81 (6) ◽  
pp. 441-442
Author(s):  
Charlotte Manisty ◽  
James C. Moon

Sign in / Sign up

Export Citation Format

Share Document