gromov hausdorff topology
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 22 (1) ◽  
pp. 11
Author(s):  
Jialong Deng

<p>We define the smooth Lipschitz topology on the moduli space and show that each conformal class is dense in the moduli space endowed with Gromov-Hausdorff topology, which offers an answer to Tuschmann’s question.</p>


2019 ◽  
Vol 2019 (757) ◽  
pp. 1-50 ◽  
Author(s):  
Feng Wang ◽  
Xiaohua Zhu

AbstractWe explore the structure of limit spaces of sequences of Riemannian manifolds with Bakry–Émery Ricci curvature bounded below in the Gromov–Hausdorff topology. By extending the techniques established by Cheeger and Cloding for Riemannian manifolds with Ricci curvature bounded below, we prove that each tangent space at a point of the limit space is a metric cone. We also analyze the singular structure of the limit space as in a paper of Cheeger, Colding and Tian. Our results will be applied to study the limit spaces for a sequence of Kähler metrics arising from solutions of certain complex Monge–Ampère equations for the existence problem of Kähler–Ricci solitons on a Fano manifold via the continuity method.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Norman Zergänge

Abstract In this work we prove convergence results of sequences of Riemannian 4-manifolds with almost vanishing {L^{2}} -norm of a curvature tensor and a non-collapsing bound on the volume of small balls. In Theorem 1.1 we consider a sequence of closed Riemannian 4-manifolds, whose {L^{2}} -norm of the Riemannian curvature tensor tends to zero. Under the assumption of a uniform non-collapsing bound and a uniform diameter bound, we prove that there exists a subsequence that converges with respect to the Gromov–Hausdorff topology to a flat manifold. In Theorem 1.2 we consider a sequence of closed Riemannian 4-manifolds, whose {L^{2}} -norm of the Riemannian curvature tensor is uniformly bounded from above, and whose {L^{2}} -norm of the traceless Ricci-tensor tends to zero. Here, under the assumption of a uniform non-collapsing bound, which is very close to the Euclidean situation, and a uniform diameter bound, we show that there exists a subsequence which converges in the Gromov–Hausdorff sense to an Einstein manifold. In order to prove Theorem 1.1 and Theorem 1.2, we use a smoothing technique, which is called {L^{2}} -curvature flow. This method was introduced by Jeffrey Streets. In particular, we use his “tubular averaging technique” in order to prove distance estimates of the {L^{2}} -curvature flow, which only depend on significant geometric bounds. This is the content of Theorem 1.3.


2018 ◽  
Vol 2018 (742) ◽  
pp. 263-280
Author(s):  
Vitali Kapovitch ◽  
Nan Li

Abstract We show that if X is a limit of n-dimensional Riemannian manifolds with Ricci curvature bounded below and γ is a limit geodesic in X, then along the interior of γ same scale measure metric tangent cones {T_{\gamma(t)}X} are Hölder continuous with respect to measured Gromov–Hausdorff topology and have the same dimension in the sense of Colding–Naber.


2009 ◽  
Vol 20 (05) ◽  
pp. 557-572
Author(s):  
YUICHI NOHARA

It is known that holomorphic sections of an ample line bundle L (and its tensor power Lk) over an Abelian variety A are given by theta functions. Moreover, a natural basis of the space of holomorphic sections of L or Lk is related to a certain Lagrangian fibration of A. In our previous paper, we studied projective embeddings of A defined by these basis for Lk. For a natural torus action on the ambient projective space, it is proved that its moment map, restricted to A, approximates the Lagrangian fibration of A for large k, with respect to the "Gromov–Hausdorff topology". In this paper, we prove that the same is true for the Kummer variety associated to A.


Sign in / Sign up

Export Citation Format

Share Document