homotopy type theory
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 26)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 351 ◽  
pp. 67-83
Author(s):  
Eric Finster ◽  
Samuel Mimram ◽  
Maxime Lucas ◽  
Thomas Seiller

Author(s):  
Anders Mörtberg

Abstract Cubical methods have played an important role in the development of Homotopy Type Theory and Univalent Foundations (HoTT/UF) in recent years. The original motivation behind these developments was to give constructive meaning to Voevodsky’s univalence axiom, but they have since then led to a range of new results. Among the achievements of these methods is the design of new type theories and proof assistants with native support for notions from HoTT/UF, syntactic and semantic consistency results for HoTT/UF, as well as a variety of independence results and establishing that the univalence axiom does not increase the proof theoretic strength of type theory. This paper is based on lecture notes that were written for the 2019 Homotopy Type Theory Summer School at Carnegie Mellon University. The goal of these lectures was to give an introduction to cubical methods and provide sufficient background in order to make the current research in this very active area of HoTT/UF more accessible to newcomers. The focus of these notes is hence on both the syntactic and semantic aspects of these methods, in particular on cubical type theory and the various cubical set categories that give meaning to these theories.


Author(s):  
Martin E. Bidlingmaier ◽  
Florian Faissole ◽  
Bas Spitters

Abstract The ALEA Coq library formalizes measure theory based on a variant of the Giry monad on the category of sets. This enables the interpretation of a probabilistic programming language with primitives for sampling from discrete distributions. However, continuous distributions have to be discretized because the corresponding measures cannot be defined on all subsets of their carriers. This paper proposes the use of synthetic topology to model continuous distributions for probabilistic computations in type theory. We study the initial σ-frame and the corresponding induced topology on arbitrary sets. Based on these intrinsic topologies, we define valuations and lower integrals on sets and prove versions of the Riesz and Fubini theorems. We then show how the Lebesgue valuation, and hence continuous distributions, can be constructed.


Author(s):  
Martín Hötzel Escardó

AbstractWe show that the Cantor–Schröder–Bernstein Theorem for homotopy types, or $$\infty $$ ∞ -groupoids, holds in the following form: For any two types, if each one is embedded into the other, then they are equivalent. The argument is developed in the language of homotopy type theory, or Voevodsky’s univalent foundations (HoTT/UF), and requires classical logic. It follows that the theorem holds in any boolean $$\infty $$ ∞ -topos.


Author(s):  
Thorsten Altenkirch

Abstract My goal is to give an accessible introduction to Martin’s work on the groupoid model and how it is related to the recent notion of univalence in Homotopy Type Theory while sharing some memories of Martin.


Humanities ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Alexander Wilson

We outline here a certain history of ideas concerning the relation between intuitions and their external verification and consider its potential for detrivializing the concept of virtuality. From Descartes and Leibniz onward to 19th-century geometry and the concept of “invariant” that it shares with 19th-century psychology, we follow the thread of what might be informally called an “operational” conception of the virtual, an intuition progressively developed in the 20th century from of group theoretical thinking into “functorial” thinking (in the context of category theory), and eventually intuitions for the concept of “univalence” (homotopy type theory) and its implications for the meaning of equality and identity. At each turn, skeptical arguments haunt this history’s modes of exteriorization, proof, and verification; we consider the later Wittgenstein’s worries concerning rule following and the apparent unbridgeable gap between formal theory and informal practice. We show how the development of mathematical intuitions and formalisms in the last century and the discovery of deep connection between intuitionistic logic and computation have begun to respond to some of these concerns and favour a conception of virtuality that is operational, constructive, pragmatic, and hospitible to scientific detrivialization.


2021 ◽  
Vol 31 (1) ◽  
pp. 1-2
Author(s):  
Benedikt Ahrens ◽  
Simon Huber ◽  
Anders Mörtberg

This issue of Mathematical Structures in Computer Science is Part I of a Special Issue dedicated to the emerging field of Homotopy Type Theory and Univalent Foundations.


Author(s):  
Felix Cherubini ◽  
Egbert Rijke

Abstract Any modality in homotopy type theory gives rise to an orthogonal factorization system of which the left class is stable under pullbacks. We show that there is a second orthogonal factorization system associated with any modality, of which the left class is the class of ○-equivalences and the right class is the class of ○-étale maps. This factorization system is called the modal reflective factorization system of a modality, and we give a precise characterization of the orthogonal factorization systems that arise as the modal reflective factorization system of a modality. In the special case of the n-truncation, the modal reflective factorization system has a simple description: we show that the n-étale maps are the maps that are right orthogonal to the map $${\rm{1}} \to {\rm{ }}{{\rm{S}}^{n + 1}}$$ . We use the ○-étale maps to prove a modal descent theorem: a map with modal fibers into ○X is the same thing as a ○-étale map into a type X. We conclude with an application to real-cohesive homotopy type theory and remark how ○-étale maps relate to the formally etale maps from algebraic geometry.


Sign in / Sign up

Export Citation Format

Share Document