minimal residual method
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 0)



2020 ◽  
Vol 62 (12) ◽  
pp. 3682-3694
Author(s):  
Amit Magdum ◽  
Mallikarjun Erramshetty ◽  
Ravi Prasad K. Jagannath


2020 ◽  
Vol 34 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Dylan Jude ◽  
Jayanarayanan Sitaraman ◽  
Vinod Lakshminarayan ◽  
James Baeder


2019 ◽  
Vol 5 (1) ◽  
pp. 39-52
Author(s):  
طیبه چراغ زاده ◽  
مهدی قاسمی ◽  
رضا خوش سیر ◽  
علیرضا انصاری ◽  
◽  
...  


2019 ◽  
Vol 19 (3) ◽  
pp. 557-579 ◽  
Author(s):  
Ignacio Muga ◽  
Matthew J. W. Tyler ◽  
Kristoffer G. van der Zee

AbstractWe propose and analyze a minimal-residual method in discrete dual norms for approximating the solution of the advection-reaction equation in a weak Banach-space setting. The weak formulation allows for the direct approximation of solutions in the Lebesgue{L^{p}}-space,{1<p<\infty}. The greater generality of this weak setting is natural when dealing with rough data and highly irregular solutions, and when enhanced qualitative features of the approximations are needed. We first present a rigorous analysis of the well-posedness of the underlying continuous weak formulation, under natural assumptions on the advection-reaction coefficients. The main contribution is the study of several discrete subspace pairs guaranteeing the discrete stability of the method and quasi-optimality in{L^{p}}, and providing numerical illustrations of these findings, including the elimination of Gibbs phenomena, computation of optimal test spaces, and application to 2-D advection.



2019 ◽  
Vol 13 ◽  
pp. 102082 ◽  
Author(s):  
Shraddha M. Naik ◽  
Ravi Prasad K. Jagannath ◽  
Venkatanareshbabu Kuppili


Author(s):  
Dylan Jude ◽  
Jay Sitaraman ◽  
Vinod K. Lakshminarayan ◽  
James D. Baeder




Author(s):  
Dylan Jude ◽  
Jayanarayanan Sitaraman ◽  
Vinod K. Lakshminarayan ◽  
James D. Baeder


Sign in / Sign up

Export Citation Format

Share Document