hamilton cycles
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 39)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 36 (1) ◽  
pp. 147-169
Author(s):  
Pedro Araújo ◽  
Simón Piga ◽  
Mathias Schacht

2022 ◽  
Vol 99 ◽  
pp. 103423
Author(s):  
Pu Gao ◽  
Bogumił Kamiński ◽  
Calum MacRury ◽  
Paweł Prałat
Keyword(s):  

Author(s):  
Lior Gishboliner ◽  
Michael Krivelevich ◽  
Peleg Michaeli

10.37236/9510 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Max Hahn-Klimroth ◽  
Giulia Maesaka ◽  
Yannick Mogge ◽  
Samuel Mohr ◽  
Olaf Parczyk

In the model of randomly perturbed graphs we consider the union of a deterministic graph $\mathcal{G}_\alpha$ with minimum degree $\alpha n$ and the binomial random graph $\mathbb{G}(n,p)$. This model was introduced by Bohman, Frieze, and Martin and for Hamilton cycles their result bridges the gap between Dirac's theorem and the results by Pósa and Korshunov on the threshold in $\mathbb{G}(n,p)$. In this note we extend this result in $\mathcal{G}_\alpha\cup\mathbb{G}(n,p)$ to sparser graphs with $\alpha=o(1)$. More precisely, for any $\varepsilon>0$ and $\alpha \colon \mathbb{N} \mapsto (0,1)$ we show that a.a.s. $\mathcal{G}_\alpha\cup \mathbb{G}(n,\beta /n)$ is Hamiltonian, where $\beta = -(6 + \varepsilon) \log(\alpha)$. If $\alpha>0$ is a fixed constant this gives the aforementioned result by Bohman, Frieze, and Martin and if $\alpha=O(1/n)$ the random part $\mathbb{G}(n,p)$ is sufficient for a Hamilton cycle. We also discuss embeddings of bounded degree trees and other spanning structures in this model, which lead to interesting questions on almost spanning embeddings into $\mathbb{G}(n,p)$.


2021 ◽  
Vol 35 (2) ◽  
pp. 970-975
Author(s):  
Andrea Freschi ◽  
Joseph Hyde ◽  
Joanna Lada ◽  
Andrew Treglown

2021 ◽  
Vol 35 (3) ◽  
pp. 1569-1577
Author(s):  
Elad Aigner-Horev ◽  
Dan Hefetz
Keyword(s):  

2021 ◽  
pp. 540-545
Author(s):  
Richard Lang ◽  
Nicolás Sanhueza-Matamala

Sign in / Sign up

Export Citation Format

Share Document