degree conditions
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 1)

10.37236/9489 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Peter Bradshaw

A bipartite graph is called bipancyclic if it contains cycles of every even length from four up to the number of vertices in the graph. A theorem of Schmeichel and Mitchem states that for $n \geqslant 4$, every balanced bipartite graph on $2n$ vertices in which each vertex in one color class has degree greater than $\frac{n}{2}$ and each vertex in the other color class has degree at least $\frac{n}{2}$ is bipancyclic. We prove a generalization of this theorem in the setting of graph transversals. Namely, we show that given a family $\mathcal{G}$ of $2n$ bipartite graphs on a common set $X$ of $2n$ vertices with a common balanced bipartition, if each graph of $\mathcal G$ has minimum degree greater than $\frac{n}{2}$ in one color class and minimum degree at least $\frac{n}{2}$ in the other color class, then there exists a cycle on $X$ of each even length $4 \leqslant \ell \leqslant 2n$ that uses at most one edge from each graph of $\mathcal G$. We also show that given a family $\mathcal G$ of $n$ bipartite graphs on a common set $X$ of $2n$ vertices meeting the same degree conditions, there exists a perfect matching on $X$ that uses exactly one edge from each graph of $\mathcal G$.



10.37236/9670 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Emily Marshall ◽  
Michael Santana

In 1963, Corrádi and Hajnal showed that if $G$ is an $n$-vertex graph with  $n \ge 3k$ and $\delta(G) \ge 2k$, then $G$ will contain $k$ disjoint cycles; furthermore, this result is best possible, both in terms of the number of vertices as well as the minimum degree. In this paper we focus on an analogue of this result for theta graphs.  Results from Kawarabayashi and Chiba et al. showed that if $n = 4k$ and $\delta(G) \ge \lceil \frac{5}{2}k \rceil$, or if $n$ is large with respect to $k$ and $\delta(G) \ge 2k+1$, respectively, then $G$ contains $k$ disjoint theta graphs.  While the minimum degree condition in both results are sharp for the number of vertices considered, this leaves a gap in which no sufficient minimum degree condition is known. Our main result in this paper resolves this by showing if $n \ge 4k$ and $\delta(G) \ge \lceil \frac{5}{2}k\rceil$, then $G$ contains $k$ disjoint theta graphs. Furthermore, we show this minimum degree condition is sharp for more than just $n = 4k$, and we discuss how and when the sharp minimum degree condition may transition from $\lceil \frac{5}{2}k\rceil$ to $2k+1$.



2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Yunbo Tian ◽  
Chao Xia

We study the low-degree solution of the Sylvester matrix equation A 1 λ + A 0 X λ + Y λ B 1 λ + B 0 = C 0 , where A 1 λ + A 0 and B 1 λ + B 0 are regular. Using the substitution of parameter variables λ , we assume that the matrices A 0 and B 0 are invertible. Thus, we prove that if the equation is solvable, then it has a low-degree solution L λ , M λ , satisfying the degree conditions δ L λ < Ind A 0 − 1 A 1  and  δ M λ < Ind B 1 B 0 − 1 .



2021 ◽  
Vol 37 (2) ◽  
pp. 232-239
Author(s):  
Jie Wu ◽  
Si-zhong Zhou
Keyword(s):  




2021 ◽  
pp. 540-545
Author(s):  
Richard Lang ◽  
Nicolás Sanhueza-Matamala




2021 ◽  
Vol 146 ◽  
pp. 96-123 ◽  
Author(s):  
Dániel Korándi ◽  
Richard Lang ◽  
Shoham Letzter ◽  
Alexey Pokrovskiy


Sign in / Sign up

Export Citation Format

Share Document