schnorr randomness
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Adam Richard Day

<p>This thesis establishes significant new results in the area of algorithmic randomness. These results elucidate the deep relationship between randomness and computability. A number of results focus on randomness for finite strings. Levin introduced two functions which measure the randomness of finite strings. One function is derived from a universal monotone machine and the other function is derived from an optimal computably enumerable semimeasure. Gacs proved that infinitely often, the gap between these two functions exceeds the inverse Ackermann function (applied to string length). This thesis improves this result to show that infinitely often the difference between these two functions exceeds the double logarithm. Another separation result is proved for two different kinds of process machine. Information about the randomness of finite strings can be used as a computational resource. This information is contained in the overgraph. Muchnik and Positselsky asked whether there exists an optimal monotone machine whose overgraph is not truth-table complete. This question is answered in the negative. Related results are also established. This thesis makes advances in the theory of randomness for infinite binary sequences. A variant of process machines is used to characterise computable randomness, Schnorr randomness and weak randomness. This result is extended to give characterisations of these types of randomness using truthtable reducibility. The computable Lipschitz reducibility measures both the relative randomness and the relative computational power of real numbers. It is proved that the computable Lipschitz degrees of computably enumerable sets are not dense. Infinite binary sequences can be regarded as elements of Cantor space. Most research in randomness for Cantor space has been conducted using the uniform measure. However, the study of non-computable measures has led to interesting results. This thesis shows that the two approaches that have been used to define randomness on Cantor space for non-computable measures: that of Reimann and Slaman, along with the uniform test approach first introduced by Levin and also used by Gacs, Hoyrup and Rojas, are equivalent. Levin established the existence of probability measures for which all infinite sequences are random. These measures are termed neutral measures. It is shown that every PA degree computes a neutral measure. Work of Miller is used to show that the set of atoms of a neutral measure is a countable Scott set and in fact any countable Scott set is the set of atoms of some neutral measure. Neutral measures are used to prove new results in computability theory. For example, it is shown that the low computable enumerable sets are precisely the computably enumerable sets bounded by PA degrees strictly below the halting problem. This thesis applies ideas developed in the study of randomness to computability theory by examining indifferent sets for comeager classes in Cantor space. A number of results are proved. For example, it is shown that there exist 1-generic sets that can compute their own indifferent sets.</p>



2021 ◽  
Author(s):  
◽  
Adam Richard Day

<p>This thesis establishes significant new results in the area of algorithmic randomness. These results elucidate the deep relationship between randomness and computability. A number of results focus on randomness for finite strings. Levin introduced two functions which measure the randomness of finite strings. One function is derived from a universal monotone machine and the other function is derived from an optimal computably enumerable semimeasure. Gacs proved that infinitely often, the gap between these two functions exceeds the inverse Ackermann function (applied to string length). This thesis improves this result to show that infinitely often the difference between these two functions exceeds the double logarithm. Another separation result is proved for two different kinds of process machine. Information about the randomness of finite strings can be used as a computational resource. This information is contained in the overgraph. Muchnik and Positselsky asked whether there exists an optimal monotone machine whose overgraph is not truth-table complete. This question is answered in the negative. Related results are also established. This thesis makes advances in the theory of randomness for infinite binary sequences. A variant of process machines is used to characterise computable randomness, Schnorr randomness and weak randomness. This result is extended to give characterisations of these types of randomness using truthtable reducibility. The computable Lipschitz reducibility measures both the relative randomness and the relative computational power of real numbers. It is proved that the computable Lipschitz degrees of computably enumerable sets are not dense. Infinite binary sequences can be regarded as elements of Cantor space. Most research in randomness for Cantor space has been conducted using the uniform measure. However, the study of non-computable measures has led to interesting results. This thesis shows that the two approaches that have been used to define randomness on Cantor space for non-computable measures: that of Reimann and Slaman, along with the uniform test approach first introduced by Levin and also used by Gacs, Hoyrup and Rojas, are equivalent. Levin established the existence of probability measures for which all infinite sequences are random. These measures are termed neutral measures. It is shown that every PA degree computes a neutral measure. Work of Miller is used to show that the set of atoms of a neutral measure is a countable Scott set and in fact any countable Scott set is the set of atoms of some neutral measure. Neutral measures are used to prove new results in computability theory. For example, it is shown that the low computable enumerable sets are precisely the computably enumerable sets bounded by PA degrees strictly below the halting problem. This thesis applies ideas developed in the study of randomness to computability theory by examining indifferent sets for comeager classes in Cantor space. A number of results are proved. For example, it is shown that there exist 1-generic sets that can compute their own indifferent sets.</p>



2019 ◽  
pp. 1-19
Author(s):  
FRANCESCA ZAFFORA BLANDO

Abstract Numerous learning tasks can be described as the process of extrapolating patterns from observed data. One of the driving intuitions behind the theory of algorithmic randomness is that randomness amounts to the absence of any effectively detectable patterns: it is thus natural to regard randomness as antithetical to inductive learning. Osherson and Weinstein [11] draw upon the identification of randomness with unlearnability to introduce a learning-theoretic framework (in the spirit of formal learning theory) for modelling algorithmic randomness. They define two success criteria—specifying under what conditions a pattern may be said to have been detected by a computable learning function—and prove that the collections of data sequences on which these criteria cannot be satisfied correspond to the set of weak 1-randoms and the set of weak 2-randoms, respectively. This learning-theoretic approach affords an intuitive perspective on algorithmic randomness, and it invites the question of whether restricting attention to learning-theoretic success criteria comes at an expressivity cost. In other words, is the framework expressive enough to capture most core algorithmic randomness notions and, in particular, Martin-Löf randomness—arguably, the most prominent algorithmic randomness notion in the literature? In this article, we answer the latter question in the affirmative by providing a learning-theoretic characterisation of Martin-Löf randomness. We then show that Schnorr randomness, another central algorithmic randomness notion, also admits a learning-theoretic characterisation in this setting.



2018 ◽  
Vol 258 ◽  
pp. 50-78 ◽  
Author(s):  
Jason Rute
Keyword(s):  


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Jaime A. Londoño

For a Polish Sample Space with a Borel σ-field with a surjective measurable transformation, we define an equivalence relation on sample points according to their ergodic limiting averages. We show that this equivalence relation partitions the subset of sample points on measurable invariant subsets, where each limiting distribution is the unique ergodic probability measure defined on each set. The results obtained suggest some natural objects for the model of a probabilistic time-invariant phenomenon are uniquely ergodic probability spaces. As a consequence of the results gained in this paper, we propose a notion of randomness that is weaker than recent approaches to Schnorr randomness.



2014 ◽  
Vol 58 (3) ◽  
pp. 441-462 ◽  
Author(s):  
Kenshi Miyabe
Keyword(s):  


2013 ◽  
Vol 142 (1) ◽  
pp. 335-349 ◽  
Author(s):  
Noopur Pathak ◽  
Cristóbal Rojas ◽  
Stephen G. Simpson


2011 ◽  
Vol 57 (3) ◽  
pp. 323-338 ◽  
Author(s):  
Kenshi Miyabe


2008 ◽  
Vol 73 (3) ◽  
pp. 999-1008 ◽  
Author(s):  
Johanna N. Y. Franklin

AbstractWe investigate the relationship between lowness for Schnorr randomness and Schnorr triviality. We show that a real is low for Schnorr randomness if and only if it is Schnorr trivial and hyperimmune free.



2005 ◽  
Vol 70 (2) ◽  
pp. 515-535 ◽  
Author(s):  
André Nies ◽  
Frank Stephan ◽  
Sebastiaan A. Terwijn

AbstractWe compare various notions of algorithmic randomness. First we consider relativized randomness. A set is n-random if it is Martin-Löf random relative to ∅(n − 1). We show that a set is 2-random if and only if there is a constant c such that infinitely many initial segments x of the set are c-incompressible: C(x) ≥ ∣x∣ − c. The ‘only if’ direction was obtained independently by Joseph Miller. This characterization can be extended to the case of time-bounded C-complexity.Next we prove some results on lowness. Among other things, we characterize the 2-random sets as those l-random sets that are low for Chaitin's Ω. Also, 2-random sets form minimal pairs with 2-generic sets. The r.e. low for Ω. sets coincide with the r.e. K-trivial ones.Finally we show that the notions of Martin-Löf randomness, recursive randomness, and Schnorr randomness can be separated in every high degree while the same notions coincide in every non-high degree. We make some remarks about hyperimmune-free and PA-complete degrees.



Sign in / Sign up

Export Citation Format

Share Document