A reductive case on derivations in Vinberg (−1,1) rings

2018 ◽  
Vol 11 (03) ◽  
pp. 1850037
Author(s):  
G. Lakshmi Devi ◽  
K. Jayalakshmi

In this paper, we describe the reductive pair [Formula: see text] with fixed decomposition [Formula: see text] and construct a reductive Vinberg [Formula: see text] ring relative to [Formula: see text] which is based on the construction of nonassociative algebras with specified simple Lie algebra [Formula: see text] of derivations. As a special case, we construct a class of Vinberg [Formula: see text] algebras ([Formula: see text], [Formula: see text] of dimension 8 with [Formula: see text] [Formula: see text] and determine its associated reductive Lie algebra [Formula: see text] [Formula: see text].

2019 ◽  
Vol 30 (03) ◽  
pp. 451-466
Author(s):  
Dietrich Burde ◽  
Vsevolod Gubarev

We introduce post-associative algebra structures and study their relationship to post-Lie algebra structures, Rota–Baxter operators and decompositions of associative algebras and Lie algebras. We show several results on the existence of such structures. In particular, we prove that there exists no post-Lie algebra structure on a pair [Formula: see text], where [Formula: see text] is a simple Lie algebra and [Formula: see text] is a reductive Lie algebra, which is not isomorphic to [Formula: see text]. We also show that there is no post-associative algebra structure on a pair [Formula: see text] arising from a Rota–Baxter operator of [Formula: see text], where [Formula: see text] is a semisimple associative algebra and [Formula: see text] is not semisimple. The proofs use results on Rota–Baxter operators and decompositions of algebras.


10.37236/1160 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Sankaran Viswanath

We give an elementary combinatorial proof of a special case of a result due to Bazlov and Ion concerning the Fourier coefficients of the Cherednik kernel. This can be used to give yet another proof of the classical fact that for a complex simple Lie algebra $\mathfrak{ g}$, the partition formed by the exponents of $\mathfrak{ g}$ is dual to that formed by the numbers of positive roots at each height.


2016 ◽  
Vol 15 (03) ◽  
pp. 1650049 ◽  
Author(s):  
Piyush Shroff ◽  
Sarah Witherspoon

We examine PBW deformations of finite group extensions of quantum symmetric algebras, in particular the quantum Drinfeld orbifold algebras defined by the first author. We give a homological interpretation, in terms of Gerstenhaber brackets, of the necessary and sufficient conditions on parameter functions to define a quantum Drinfeld orbifold algebra, thus clarifying the conditions. In case the acting group is trivial, we determine conditions under which such a PBW deformation is a generalized enveloping algebra of a color Lie algebra; our PBW deformations include these algebras as a special case.


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


1992 ◽  
Vol 07 (05) ◽  
pp. 877-945 ◽  
Author(s):  
E. GUADAGNINI

The solution of the non-Abelian SU (N) quantum Chern–Simons field theory defined in R3 is presented. It is shown how to compute the expectation values of the Wilson line operators, associated with oriented framed links, in closed form. The main properties of the universal link polynomial, defined by these expectation values, are derived in the case of a generic real simple Lie algebra. The resulting polynomials for some simple examples of links are reported.


2002 ◽  
Vol 01 (04) ◽  
pp. 413-424 ◽  
Author(s):  
V. D. LYAKHOVSKY ◽  
M. E. SAMSONOV

The twist deformations for simple Lie algebras [Formula: see text] whose twisting elements ℱ are known explicitly are usually defined on the carrier subspace injected in the Borel subalgebra [Formula: see text]. We consider the case where the carrier of the twist intersects nontrivially with both [Formula: see text] and [Formula: see text]. The main element of the new deformation is the parabolic twist ℱ℘ whose carrier is the minimal parabolic subalgebra of simple Lie algebra [Formula: see text]. It has the structure of the algebra of two-dimensional motions, contains [Formula: see text] and intersects nontrivially with [Formula: see text]. The twist ℱ℘ is constructed as a composition of the extended jordanian twist [Formula: see text] and the factor [Formula: see text]. The latter can be considered as a special deformed version of the jordanian twist. The twisted costructure is found for [Formula: see text] and the corresponding universal ℛ-matrix is presented. The parabolic twist can be composed with certain types of chains of extended jordanian twists for algebras A2(n-1). The chains enlarged by the parabolic factor ℱ℘ perform the explicit quantization of the new set of classical r-matrices.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


Sign in / Sign up

Export Citation Format

Share Document