commutative subalgebras
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Grzegorz Bajor ◽  
Leon van Wyk ◽  
Michał Ziembowski

Abstract Considering prime Leavitt path algebras L K ⁢ ( E ) {L_{K}(E)} , with E being an arbitrary graph with at least two vertices, and K being any field, we construct a class of maximal commutative subalgebras of L K ⁢ ( E ) {L_{K}(E)} such that, for every algebra A from this class, A has zero intersection with the commutative core ℳ K ⁢ ( E ) {\mathcal{M}_{K}(E)} of L K ⁢ ( E ) {L_{K}(E)} defined and studied in [C. Gil Canto and A. Nasr-Isfahani, The commutative core of a Leavitt path algebra, J. Algebra 511 2018, 227–248]. We also give a new proof of the maximality, as a commutative subalgebra, of the commutative core ℳ R ⁢ ( E ) {\mathcal{M}_{R}(E)} of an arbitrary Leavitt path algebra L R ⁢ ( E ) {L_{R}(E)} , where E is an arbitrary graph and R is a commutative unital ring.


Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


2021 ◽  
Vol 1 (1) ◽  
pp. 61-86
Author(s):  
Georgy Sharygin

The argument shift method is a well-known method for generating commutative families of functions in Poisson algebras from central elements and a vector field, verifying a special condition with respect to the Poisson bracket. In this notice we give an analogous construction, which gives one a way to create commutative subalgebras of a deformed algebra from its center (which is as it is well known describable in the terms of the center of the Poisson algebra) and an L∞-differentiation of the algebra of Hochschild cochains, verifying some additional conditions with respect to the Poisson structure.


Author(s):  
Nikolay A. Moldovyan ◽  
◽  
Alexandr A. Moldovyan ◽  

The article considers the structure of the 2x2 matrix algebra set over a ground finite field GF(p). It is shown that this algebra contains three types of commutative subalgebras of order p2, which differ in the value of the order of their multiplicative group. Formulas describing the number of subalgebras of every type are derived. A new post-quantum digital signature scheme is introduced based on a novel form of the hidden discrete logarithm problem. The scheme is characterized in using scalar multiplication as an additional operation masking the hidden cyclic group in which the basic exponentiation operation is performed when generating the public key. The advantage of the developed signature scheme is the comparatively high performance of the signature generation and verification algorithms as well as the possibility to implement a blind signature protocol on its base.


Author(s):  
Dmitri I Panyushev ◽  
Oksana S Yakimova

Abstract The symmetric algebra ${\mathcal{S}}({{\mathfrak{g}}})$ of a reductive Lie algebra ${{\mathfrak{g}}}$ is equipped with the standard Poisson structure, that is, the Lie–Poisson bracket. Poisson-commutative subalgebras of ${\mathcal{S}}({{\mathfrak{g}}})$ attract a great deal of attention because of their relationship to integrable systems and, more recently, to geometric representation theory. The transcendence degree of a Poisson-commutative subalgebra ${\mathcal C}\subset{\mathcal{S}}({{\mathfrak{g}}})$ is bounded by the “magic number” ${\boldsymbol{b}}({{\mathfrak{g}}})$ of ${{\mathfrak{g}}}$. There are two classical constructions of $\mathcal C$ with ${\textrm{tr.deg}}\,{\mathcal C}={\boldsymbol{b}}({{\mathfrak{g}}})$. The 1st one is applicable to $\mathfrak{gl}_n$ and $\mathfrak{so}_n$ and uses the Gelfand–Tsetlin chains of subalgebras. The 2nd one is known as the “argument shift method” of Mishchenko–Fomenko. We generalise the Gelfand–Tsetlin approach to chains of almost arbitrary symmetric subalgebras. Our method works for all types. Starting from a symmetric decompositions ${{\mathfrak{g}}}={{\mathfrak{g}}}_0\oplus{{\mathfrak{g}}}_1$, Poisson-commutative subalgebras ${{\mathcal{Z}}},\tilde{{\mathcal{Z}}}\subset{\mathcal{S}}({{\mathfrak{g}}})^{{{\mathfrak{g}}}_0}$ of the maximal possible transcendence degree are constructed. If the ${{\mathbb{Z}}}_2$-contraction ${{\mathfrak{g}}}_0\ltimes{{\mathfrak{g}}}_1^{\textsf{ab}}$ has a polynomial ring of symmetric invariants, then $\tilde{{\mathcal{Z}}}$ is a polynomial maximal Poisson-commutative subalgebra of ${\mathcal{S}}({{\mathfrak{g}}})^{{{\mathfrak{g}}}_0}$ and its free generators are explicitly described.


Sign in / Sign up

Export Citation Format

Share Document