rogue wave solution
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Xin Wang ◽  
Lei Wang ◽  
Jiao Wei ◽  
Bowen Guo ◽  
Jingfeng Kang

The coupled Maxwell–Bloch (CMB) system is a fundamental model describing the propagation of ultrashort laser pulses in a resonant medium with coherent three-level atomic transitions. In this paper, we consider an integrable generalization of the CMB equations with the defocusing case. The CMB hierarchy is derived with the aid of a 3 × 3 matrix eigenvalue problem and the Lenard recursion equation, from which the defocusing CMB model is proposed as a special reduction of the general CMB equations. The n -fold Darboux transformation as well as the multiparametric n th-order rogue wave solution of the defocusing CMB equations are put forward in terms of Schur polynomials. As an application, the explicit rogue wave solutions from first to second order are presented. Apart from the traditional dark rogue wave, bright rogue wave and four-petalled rogue wave, some novel rogue wave structures such as the dark four-peaked rogue wave and the double-ridged rogue wave are found. Moreover, the second-order rogue wave triplets which contain a fixed number of these rogue waves are shown.


2021 ◽  
Vol 30 ◽  
pp. 104847
Author(s):  
Wedad Albalawi ◽  
S.A. El-Tantawy ◽  
Alvaro H. Salas

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bo Xu ◽  
Yufeng Zhang ◽  
Sheng Zhang

To construct fractional rogue waves, this paper first introduces a conformable fractional partial derivative. Based on the conformable fractional partial derivative and its properties, a fractional Schrödinger (NLS) equation with Lax integrability is then derived and first- and second-order fractional rogue wave solutions of which are finally obtained. The obtained fractional rogue wave solutions possess translational coordination, providing, to some extent, the degree of freedom to adjust the position of the rogue waves on the coordinate plane. It is shown that the obtained first- and second-order fractional rogue wave solutions are steeper than those of the corresponding NLS equation with integer-order derivatives. Besides, the time the second-order fractional rogue wave solution undergoes from the beginning to the end is also short. As for asymmetric fractional rogue waves with different backgrounds and amplitudes, this paper puts forward a way to construct them by modifying the obtained first- and second-order fractional rogue wave solutions.


2021 ◽  
Author(s):  
J.C. Pu ◽  
J. Li ◽  
Y. Chen

Abstract The solving of the derivative nonlinear Schrodinger equation (DNLS) has attracted considerable attention in theoretical analysis and physical applications. Based on the physicsinformed neural network (PINN) which has been put forward to uncover dynamical behaviors of nonlinear partial different equation from spatiotemporal data directly, an improved PINN method with neuron-wise locally adaptive activation function is presented to derive localized wave solutions of the DNLS in complex space. In order to compare the performance of above two methods, we reveal the dynamical behaviors and error analysis for localized wave solutions which include one-rational soliton solution, genuine rational soliton solutions and rogue wave solution of the DNLS by employing two methods, also exhibit vivid diagrams and detailed analysis. The numerical results demonstrate the improved method has faster convergence and better simulation effect. On the bases of the improved method, the effects for different numbers of initial points sampled, residual collocation points sampled, network layers, neurons per hidden layer on the second order genuine rational soliton solution dynamics of the DNLS are considered, and the relevant analysis when the locally adaptive activation function chooses different initial values of scalable parameters are also exhibited in the simulation of the two-order rogue wave solution.


Author(s):  
Xiu-Bin Wang ◽  
Bo Han

AbstractIn this work, the (4+1)-dimensional Fokas equation, which is an important physics model, is under investigation. Based on the obtained soliton solutions, the new rational solutions are successfully constructed. Moreover, based on its bilinear formalism, a concise method is employed to explicitly construct its rogue-wave solution and interaction solution with an ansätz function. Finally, the main characteristics of these solutions are graphically discussed. Our results can be helpful for explaining some related nonlinear phenomena.


2020 ◽  
Vol 69 (1) ◽  
pp. 017501
Author(s):  
Zai-Dong Li ◽  
Qi-Qi Guo

2019 ◽  
Vol 33 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Bo Han

In this work, a (2 + 1)-dimensional generalized Nizhnik–Novikov–Veselov (GNNV) equation, which can be reduced to several integrable equations, is under investigation. By virtue of Bell’s polynomials, an effective and straightforward way is presented to succinctly construct its two bilinear forms. Furthermore, based on the bilinear formalism and the extended homoclinic test, the breather wave solution, rogue-wave solution and solitary-wave solution of the equation are well constructed. The results can be used to enrich the dynamical behavior of the (2 + 1)-dimensional nonlinear wave fields.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850367 ◽  
Author(s):  
Yehui Huang ◽  
Hongqing Jing ◽  
Runliang Lin ◽  
Yuqin Yao

In this paper, we study the nonlinear Schrödinger equation with self-consistent sources, and obtain the rogue wave solution, the breather solution and their interactions by the generalized Darboux transformation. The dynamics of the rogue wave solution, the breather solution and their interactions are analyzed.


Sign in / Sign up

Export Citation Format

Share Document