nonsmooth critical point
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 6 (10) ◽  
pp. 10947-10963
Author(s):  
Yan Ning ◽  
◽  
Daowei Lu ◽  
Anmin Mao ◽  

<abstract><p>In this paper we study nonlinear periodic systems driven by the vectorial $ p $-Laplacian with a nonsmooth locally Lipschitz potential function. Using variational methods based on nonsmooth critical point theory, some existence of periodic and subharmonic results are obtained, which improve and extend related works.</p></abstract>



2019 ◽  
Vol 12 (3) ◽  
pp. 277-302 ◽  
Author(s):  
Samuel Littig ◽  
Friedemann Schuricht

AbstractWe consider perturbed eigenvalue problems of the 1-Laplace operator and verify the existence of a sequence of solutions. It is shown that the eigenvalues of the perturbed problem converge to the corresponding eigenvalue of the unperturbed problem as the perturbation becomes small. The results rely on nonsmooth critical point theory based on the weak slope.



2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Dongdong Gao ◽  
Jianli Li

An existence of at least three solutions for a fourth-order impulsive differential inclusion will be obtained by applying a nonsmooth version of a three-critical-point theorem. Our results generalize and improve some known results.



2016 ◽  
Vol 25 (2) ◽  
pp. 333-356 ◽  
Author(s):  
Nicuşor Costea ◽  
Mihály Csirik ◽  
Csaba Varga


Author(s):  
Nemat Nyamoradi ◽  
Mohamad Rasoul Hamidi

Abstract In this paper we consider a class of a fourth-order boundary value problem. Using a variational method based on nonsmooth critical point theory, we prove the existence and multiplicity of solutions.



Sign in / Sign up

Export Citation Format

Share Document