cohomological field theories
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2020 ◽  
Vol 32 (10) ◽  
pp. 2030007
Author(s):  
Gaëtan Borot

This paper aims at explaining some incarnations of the idea of topological recursion: in two-dimensional quantum field theories (2d TQFTs), in cohomological field theories (CohFT), and in the computation of volumes of the moduli space of curves. It gives an introduction to the formalism of quantum Airy structures on which the topological recursion is based, which is seen at work in the above topics.


2019 ◽  
Vol 155 (5) ◽  
pp. 995-1024
Author(s):  
Shuai Guo ◽  
Dustin Ross

We prove the genus-one restriction of the all-genus Landau–Ginzburg/Calabi–Yau conjecture of Chiodo and Ruan, stated in terms of the geometric quantization of an explicit symplectomorphism determined by genus-zero invariants. This gives the first evidence supporting the higher-genus Landau–Ginzburg/Calabi–Yau correspondence for the quintic $3$ -fold, and exhibits the first instance of the ‘genus zero controls higher genus’ principle, in the sense of Givental’s quantization formalism, for non-semisimple cohomological field theories.


2019 ◽  
Vol 12 (2) ◽  
pp. 463-535 ◽  
Author(s):  
Vladimir Dotsenko ◽  
Sergey Shadrin ◽  
Bruno Vallette

2019 ◽  
Vol 2020 (24) ◽  
pp. 10381-10446 ◽  
Author(s):  
Alexandr Buryak ◽  
Boris Dubrovin ◽  
Jérémy Guéré ◽  
Paolo Rossi

Abstract In this paper we study various aspects of the double ramification (DR) hierarchy, introduced by the 1st author, and its quantization. We extend the notion of tau-symmetry to quantum integrable hierarchies and prove that the quantum DR hierarchy enjoys this property. We determine explicitly the genus $1$ quantum correction and, as an application, compute completely the quantization of the $3$- and $4$-KdV hierarchies (the DR hierarchies for Witten’s $3$- and $4$-spin theories). We then focus on the recursion relation satisfied by the DR Hamiltonian densities and, abstracting from its geometric origin, we use it to characterize and construct a new family of quantum and classical integrable systems that we call of DR type, as they satisfy all of the main properties of the DR hierarchy. In the 2nd part, we obtain new insight towards the Miura equivalence conjecture between the DR and Dubrovin-Zhang (DZ) hierarchies, via a geometric interpretation of the correlators forming the DR tau-function. We then show that the candidate Miura transformation between the DR and DZ hierarchies (which we uniquely identified in our previous paper) indeed turns the DZ Poisson structure into the standard form. Eventually, we focus on integrable hierarchies associated with rank-$1$ cohomological field theories and their deformations, and we prove the DR/DZ equivalence conjecture up to genus $5$ in this context.


2019 ◽  
Vol 57 (1) ◽  
pp. 191-213
Author(s):  
R. Pandharipande ◽  
D. Zvonkine ◽  
D. Petersen

2019 ◽  
Vol 7 ◽  
Author(s):  
RAHUL PANDHARIPANDE ◽  
HSIAN-HUA TSENG

We study the higher genus equivariant Gromov–Witten theory of the Hilbert scheme of $n$ points of $\mathbb{C}^{2}$ . Since the equivariant quantum cohomology, computed by Okounkov and Pandharipande [Invent. Math. 179 (2010), 523–557], is semisimple, the higher genus theory is determined by an $\mathsf{R}$ -matrix via the Givental–Teleman classification of Cohomological Field Theories (CohFTs). We uniquely specify the required $\mathsf{R}$ -matrix by explicit data in degree $0$ . As a consequence, we lift the basic triangle of equivalences relating the equivariant quantum cohomology of the Hilbert scheme $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ and the Gromov–Witten/Donaldson–Thomas correspondence for 3-fold theories of local curves to a triangle of equivalences in all higher genera. The proof uses the analytic continuation of the fundamental solution of the QDE of the Hilbert scheme of points determined by Okounkov and Pandharipande [Transform. Groups 15 (2010), 965–982]. The GW/DT edge of the triangle in higher genus concerns new CohFTs defined by varying the 3-fold local curve in the moduli space of stable curves. The equivariant orbifold Gromov–Witten theory of the symmetric product $\mathsf{Sym}^{n}(\mathbb{C}^{2})$ is also shown to be equivalent to the theories of the triangle in all genera. The result establishes a complete case of the crepant resolution conjecture [Bryan and Graber, Algebraic Geometry–Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 23–42; Coates et al., Geom. Topol. 13 (2009), 2675–2744; Coates & Ruan, Ann. Inst. Fourier (Grenoble) 63 (2013), 431–478].


2018 ◽  
Vol 2018 (735) ◽  
pp. 287-315 ◽  
Author(s):  
Todor Milanov ◽  
Yongbin Ruan ◽  
Yefeng Shen

AbstractIn this paper, we review Teleman’s work on lifting Givental’s quantization of{\mathcal{L}^{(2)}_{+}{\rm GL}(H)}action for semisimple formal Gromov–Witten potential into cohomological field theory level. We apply this to obtain a global cohomological field theory for simple elliptic singularities. The extension of those cohomological field theories over large complex structure limit are mirror to cohomological field theories from elliptic orbifold projective lines of weight(3,3,3),(2,4,4),(2,3,6). Via mirror symmetry, we prove generating functions of Gromov–Witten cycles for those orbifolds are cycle-valued (quasi)-modular forms.


Sign in / Sign up

Export Citation Format

Share Document