integrable hierarchies
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1797
Author(s):  
Huanhuan Lu ◽  
Yufeng Zhang

In this article, we adopt two kinds of loop algebras corresponding to the Lie algebra B(0,1) to introduce two line spectral problems with different numbers of even and odd superfunctions. Through generalizing the time evolution λt to a polynomial of λ, two isospectral-nonisospectral super integrable hierarchies are derived in terms of Tu scheme and zero-curvature equation. Among them, the first super integrable hierarchy is further reduced to generalized Fokker–Plank equation and special bond pricing equation, as well as an explicit super integrable system under the choice of specific parameters. More specifically, a super integrable coupled equation is derived and the corresponding integrable properties are discussed, including the Lie point symmetries and one-parameter Lie symmetry groups as well as group-invariant solutions associated with characteristic equation.


2021 ◽  
Vol Volume 1 ◽  
Author(s):  
Mats Vermeeren

Many integrable hierarchies of differential equations allow a variational description, called a Lagrangian multiform or a pluri-Lagrangian structure. The fundamental object in this theory is not a Lagrange function but a differential $d$-form that is integrated over arbitrary $d$-dimensional submanifolds. All such action integrals must be stationary for a field to be a solution to the pluri-Lagrangian problem. In this paper we present a procedure to obtain Hamiltonian structures from the pluri-Lagrangian formulation of an integrable hierarchy of PDEs. As a prelude, we review a similar procedure for integrable ODEs. We show that exterior derivative of the Lagrangian $d$-form is closely related to the Poisson brackets between the corresponding Hamilton functions. In the ODE (Lagrangian 1-form) case we discuss as examples the Toda hierarchy and the Kepler problem. As examples for the PDE (Lagrangian 2-form) case we present the potential and Schwarzian Korteweg-de Vries hierarchies, as well as the Boussinesq hierarchy.


Author(s):  
Si-Qi Liu ◽  
Zhe Wang ◽  
Youjin Zhang

2021 ◽  
Vol Volume 1 ◽  
Author(s):  
Sergey V. Meleshko ◽  
Colin Rogers

Reciprocal transformations associated with admitted conservation laws were originally used to derive invariance properties in non-relativistic gasdynamics and applied to obtain reduction to tractable canonical forms. They have subsequently been shown to have diverse physical applications to nonlinear systems, notably in the analytic treatment of Stefan-type moving boundary problem and in linking inverse scattering systems and integrable hierarchies in soliton theory. Here,invariance under classes of reciprocal transformations in relativistic gasdynamics is shown to be linked to a Lie group procedure.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.


Author(s):  
Jing Kang ◽  
Xiaochuan Liu ◽  
Peter J. Olver ◽  
Changzheng Qu

Author(s):  
Alessandro Arsie ◽  
Alexandr Buryak ◽  
Paolo Lorenzoni ◽  
Paolo Rossi

AbstractWe define the double ramification hierarchy associated to an F-cohomological field theory and use this construction to prove that the principal hierarchy of any semisimple (homogeneous) flat F-manifold possesses a (homogeneous) integrable dispersive deformation at all orders in the dispersion parameter. The proof is based on the reconstruction of an F-CohFT starting from a semisimple flat F-manifold and additional data in genus 1, obtained in our previous work. Our construction of these dispersive deformations is quite explicit and we compute several examples. In particular, we provide a complete classification of rank 1 hierarchies of DR type at the order 9 approximation in the dispersion parameter and of homogeneous DR hierarchies associated with all 2-dimensional homogeneous flat F-manifolds at genus 1 approximation.


2021 ◽  
pp. 2150045
Author(s):  
Chuanzhong Li

In this paper, we first construct a symplectic Schur function solution to a newly defined two-component symplectic Kadomtsev–Petviashvili hierarchy. As a generalization of a two-component symplectic Schur function, we construct two-component symplectic universal characters which satisfy quadratic equations in an infinite-dimensional integrable dynamic system called a two-component symplectic universal character hierarchy. Then, we define a modified symplectic universal character hierarchy whose tau function can be represented by free fermions in Clifford algebras.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jean-Emile Bourgine

Abstract In [1], Nakatsu and Takasaki have shown that the melting crystal model behind the topological strings vertex provides a tau-function of the KP hierarchy after an appropriate time deformation. We revisit their derivation with a focus on the underlying quantum W1+∞ symmetry. Specifically, we point out the role played by automorphisms and the connection with the intertwiner — or vertex operator — of the algebra. This algebraic perspective allows us to extend part of their derivation to the refined melting crystal model, lifting the algebra to the quantum toroidal algebra of $$ \mathfrak{gl} $$ gl (1) (also called Ding-Iohara-Miki algebra). In this way, we take a first step toward the definition of deformed hierarchies associated to A-model refined topological strings.


Sign in / Sign up

Export Citation Format

Share Document