euclidean vector space
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
D. V. ALEKSEEVSKY ◽  
V. CORTÉS

AbstractThe paper is devoted to the generalization of the Vinberg theory of homogeneous convex cones. Such a cone is described as the set of “positive definite matrices” in the Vinberg commutative algebra ℋn of Hermitian T-matrices. These algebras are a generalization of Euclidean Jordan algebras and consist of n × n matrices A = (aij), where aii ∈ ℝ, the entry aij for i < j belongs to some Euclidean vector space (Vij ; 𝔤) and $$ {a}_{ji}={a}_{ij}^{\ast }=\mathfrak{g}\left({a}_{ij},\cdot \right)\in {V}_{ij}^{\ast } $$ a ji = a ij ∗ = g a ij ⋅ ∈ V ij ∗ belongs to the dual space $$ {V}_{ij}^{\ast }. $$ V ij ∗ . The multiplication of T-Hermitian matrices is defined by a system of “isometric” bilinear maps Vij × Vjk → Vij ; i < j < k, such that |aij ⋅ ajk| = |aij| ⋅ |aik|, alm ∈ Vlm. For n = 2, the Hermitian T-algebra ℋn= ℋ2 (V) is determined by a Euclidean vector space V and is isomorphic to a Euclidean Jordan algebra called the spin factor algebra and the associated homogeneous convex cone is the Lorentz cone of timelike future directed vectors in the Minkowski vector space ℝ1,1⊕ V . A special Vinberg Hermitian T-algebra is a rank 3 matrix algebra ℋ3(V; S) associated to a Clifford Cl(V )-module S together with an “admissible” Euclidean metric 𝔤S.We generalize the construction of rank 2 Vinberg algebras ℋ2(V ) and special Vinberg algebras ℋ3(V; S) to the pseudo-Euclidean case, when V is a pseudo-Euclidean vector space and S = S0 ⊕ S1 is a ℤ2-graded Clifford Cl(V )-module with an admissible pseudo-Euclidean metric. The associated cone 𝒱 is a homogeneous, but not convex cone in ℋm; m = 2; 3. We calculate the characteristic function of Koszul-Vinberg for this cone and write down the associated cubic polynomial. We extend Baez’ quantum-mechanical interpretation of the Vinberg cone 𝒱2 ⊂ ℋ2(V ) to the special rank 3 case.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 342
Author(s):  
Wolf-Dieter Richter

Three-complex numbers are introduced for using a geometric vector product in the three-dimensional Euclidean vector space R3 and proving its equivalence with a spherical coordinate product. Based upon the definitions of the geometric power and geometric exponential functions, some Euler-type trigonometric representations of three-complex numbers are derived. Further, a general l23−complex algebraic structure together with its matrix, polynomial and variable basis vector representations are considered. Then, the classes of lp3-complex numbers are introduced. As an application, Euler-type formulas are used to construct directional probability laws on the Euclidean unit sphere in R3.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel J. F. Fox

Abstract The space of tensors of metric curvature type on a Euclidean vector space carries a two-parameter family of orthogonally invariant commutative nonassociative multiplications invariant with respect to the symmetric bilinear form determined by the metric. For a particular choice of parameters these algebras recover the polarization of the quadratic map on metric curvature tensors that arises in the work of Hamilton on the Ricci flow. Here these algebras are studied as interesting examples of metrized commutative algebras and in low dimensions they are described concretely in terms of nonstandard commutative multiplications on self-adjoint endomorphisms. The algebra of curvature tensors on a 3-dimensional Euclidean vector space is shown isomorphic to an orthogonally invariant deformation of the standard Jordan product on $3 \times 3$ symmetric matrices. This algebra is characterized up to isomorphism in terms of purely algebraic properties of its idempotents and the spectra of their multiplication operators. On a vector space of dimension at least 4, the subspace of Weyl (Ricci-flat) curvature tensors is a subalgebra for which the multiplication endomorphisms are trace-free and the Killing type trace-form is a multiple of the nondegenerate invariant metric. This subalgebra is simple when the Euclidean vector space has dimension greater than 4. In the presence of a compatible complex structure, the analogous result is obtained for the subalgebra of Kähler Weyl curvature tensors. It is shown that the anti-self-dual Weyl tensors on a 4-dimensional vector space form a simple 5-dimensional ideal isometrically isomorphic to the trace-free part of the Jordan product on trace-free $3 \times 3$ symmetric matrices.


2018 ◽  
Vol 11 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Jens Christian Larsen

In this paper, I continue the study of the mathematical models presented in [J. C. Larsen, Models of cancer growth, J. Appl. Math. Comput. 53(1–2) (2015) 613–645] and [J. C. Larsen, The bistability theorem in a model of metastatic cancer, to appear in Appl. Math.]. I shall prove the bistability theorem for the ODE model from [Larsen, 2015]. It is a mass action kinetic system in the variables [Formula: see text] cancer, GF growth factor and GI growth inhibitor. This theorem says that for some values of the parameters, there exist two positive singular points [Formula: see text], [Formula: see text] of the vector field. Here [Formula: see text] and [Formula: see text] is stable and [Formula: see text] is unstable, see Sec. 2. There is also a discrete model in [Larsen, 2015], it is a linear map ([Formula: see text]) on three-dimensional Euclidean vector space with variables [Formula: see text] where these variables have the same meaning as in the ODE model above. In [Larsen, 2015], I showed that one can sometimes find affine vector fields on three-dimensional Euclidean vector space whose time one map is [Formula: see text]. I shall also show this in the present paper in a more general setting than in [Larsen, 2015]. This enables me to find an expression for the rate of change of cancer growth on the coordinate hyperplane [Formula: see text] in Euclidean vector space. I also present an ODE model of cancer metastasis with variables [Formula: see text] where [Formula: see text] is primary cancer and [Formula: see text] is metastatic cancer and GF, GI are growth factors and growth inhibitors, respectively.


Author(s):  
S. Melnyk ◽  
I. Tuluzov ◽  
A. Melnyk

The new information physical method of constructing the space of economic states is proposed. Unlike the existing theories of consumption, its properties are completely determined axiomatically by the operation of measurement and do not require phenomenological assumptions. The authors consider a transaction of exchange of valuables between two proprietors as such operation. The result of measurement is a dimensional number equal to the proportion of exchange. The constructed space appears to be Euclidean vector space with ordinary operators of composition of vectors, their scalar product, etc. The task of determining the parameters of equilibrium of a complex economic system can be formulated as a task of statics in the constructed space and can be solved by one of the physical methods.


Author(s):  
Diogo Bolster ◽  
Mark Meerschaert ◽  
Alla Sikorskii

AbstractThis paper establishes a product rule for fractional derivatives of a realvalued function defined on a finite dimensional Euclidean vector space. The proof uses Fourier transforms.


Sign in / Sign up

Export Citation Format

Share Document