homological perturbation theory
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Graham Ellis

This chapter introduces some of the basic ingredients in the classification of homotopy 2-types and describes datatypes and algorithms for implementing them on a computer. These are illustrated using computer examples involving: the fundamental crossed modules of a CW-complex, cat-1-groups, simplicial groups, Moore complexes, the Dold-Kan correspondence, integral homology of simplicial groups, homological perturbation theory. A manual classification of homotopy classes of maps from a surface to the projective plane is also included.



Author(s):  
Graham Ellis

This chapter introduces the basic ingredients of the cohomology of groups and describes datatypes and algorithms for implementing them on a computer. These are illustrated using computer examples involving: integral homology of finite groups such as the Mathieu groups, homology of crystallographic groups, homology of nilpotent groups, homology of Coxeter groups, transfer homomorphism, homological perturbation theory, mod-p comology rings of small finite p-groups, Lyndon-Hocshild-Serre spectral sequence, Bokstein operation, Steenrod squares, Stiefel-Whitney classes, Lie algebras, the modular isomorphism problem, and Bredon homology.



2018 ◽  
Vol 25 (4) ◽  
pp. 529-544 ◽  
Author(s):  
Johannes Huebschmann

AbstractUsing homological perturbation theory, we develop a formal version of the miniversal deformation associated with a deformation problem controlled by a differential graded Lie algebra over a field of characteristic zero. Our approach includes a formal version of the Kuranishi method in the theory of deformations of complex manifolds.







2010 ◽  
Vol 17 (1) ◽  
pp. 13-23
Author(s):  
Víctor Álvarez ◽  
José Andrés Armario ◽  
María Dolores Frau ◽  
Pedro Real

Abstract Let 𝐺 × τ 𝐺′ be the principal twisted Cartesian product with fibre 𝐺, base 𝐺 and twisting function where 𝐺 and 𝐺′ are simplicial groups as well as 𝐺 × τ 𝐺′; and 𝐶𝑁(𝐺) ⊗𝑡 𝐶𝑁 (𝐺′) be the twisted tensor product associated to 𝐶𝑁 (𝐺 × τ 𝐺′) by the twisted Eilenberg–Zilber theorem. Here we prove that the pair 𝐶𝑁(𝐺) ⊗𝑡 𝐶𝑁(𝐺′), μ) is a multiplicative Cartan's construction where μ is the standard product on 𝐶𝑁(𝐺) ⊗ 𝐶𝑁(𝐺′). Furthermore, assuming that a contraction from 𝐶𝑁(𝐺′) to 𝐻𝐺′ exists and using the techniques from homological perturbation theory, we extend the former result to other “twisted” tensor products of the form 𝐶𝑁(𝐺) ⊗ 𝐻𝐺′.



2004 ◽  
Vol 11 (4) ◽  
pp. 733-752 ◽  
Author(s):  
J. Huebschmann

Abstract Let 𝑅 be a local ring and 𝐴 a connected differential graded algebra over 𝑅 which is free as a graded 𝑅-module. Using homological perturbation theory techniques, we construct a minimal free multi-model for 𝐴 having properties similar to those of an ordinary minimal model over a field; in particular the model is unique up to isomorphism of multialgebras. The attribute ‘multi’ refers to the category of multicomplexes.



Sign in / Sign up

Export Citation Format

Share Document