theta lift
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 156 (11) ◽  
pp. 2368-2398
Author(s):  
Yueke Hu ◽  
Abhishek Saha

We improve upon the local bound in the depth aspect for sup-norms of newforms on $D^\times$, where $D$ is an indefinite quaternion division algebra over ${\mathbb {Q}}$. Our sup-norm bound implies a depth-aspect subconvexity bound for $L(1/2, f \times \theta _\chi )$, where $f$ is a (varying) newform on $D^\times$ of level $p^n$, and $\theta _\chi$ is an (essentially fixed) automorphic form on $\textrm {GL}_2$ obtained as the theta lift of a Hecke character $\chi$ on a quadratic field. For the proof, we augment the amplification method with a novel filtration argument and a recent counting result proved by the second-named author to reduce to showing strong quantitative decay of matrix coefficients of local newvectors along compact subsets, which we establish via $p$-adic stationary phase analysis. Furthermore, we prove a general upper bound in the level aspect for sup-norms of automorphic forms belonging to any family whose associated matrix coefficients have such a decay property.



Author(s):  
David Klein ◽  
Jennifer Kupka

Abstract We present completions of mock theta functions to harmonic weak Maass forms of weight $$\nicefrac {1}{2}$$ 1 2 and algebraic formulas for the coefficients of mock theta functions. We give several harmonic weak Maass forms of weight $$\nicefrac {1}{2}$$ 1 2 that have mock theta functions as their holomorphic part. Using these harmonic weak Maass forms and the Millson theta lift, we compute finite algebraic formulas for the coefficients of the appearing mock theta functions in terms of traces of singular moduli.



2018 ◽  
Vol 154 (10) ◽  
pp. 2090-2149 ◽  
Author(s):  
Stephan Ehlen ◽  
Siddarth Sankaran

Our aim is to clarify the relationship between Kudla’s and Bruinier’s Green functions attached to special cycles on Shimura varieties of orthogonal and unitary type, which play a key role in the arithmetic geometry of these cycles in the context of Kudla’s program. In particular, we show that the generating series obtained by taking the differences of the two families of Green functions is a non-holomorphic modular form and has trivial (cuspidal) holomorphic projection. Along the way, we construct a section of the Maaß lowering operator for moderate growth forms valued in the Weil representation using a regularized theta lift, which may be of independent interest, as it in particular has applications to mock modular forms. We also consider arithmetic-geometric applications to integral models of $U(n,1)$ Shimura varieties. Each family of Green functions gives rise to a formal arithmetic theta function, valued in an arithmetic Chow group, that is conjectured to be modular; our main result is the modularity of the difference of the two arithmetic theta functions. Finally, we relate the arithmetic heights of the special cycles to special derivatives of Eisenstein series, as predicted by Kudla’s conjecture, and describe a refinement of a theorem of Bruinier, Howard and Yang on arithmetic intersections against CM points.



2018 ◽  
Vol 328 ◽  
pp. 858-889 ◽  
Author(s):  
Claudia Alfes-Neumann ◽  
Markus Schwagenscheidt
Keyword(s):  




2012 ◽  
Vol 153 (3) ◽  
pp. 471-487 ◽  
Author(s):  
THOMAS WARD

AbstractLet f be a primitive, cuspidal Hilbert modular form of parallel weight. We investigate the Rankin convolution L-values L(f,g,s), where g is a theta-lift modular form corresponding to a finite-order character. We prove weak forms of Kato's ‘false Tate curve’ congruences for these values, of the form predicted by conjectures in non-commmutative Iwasawa theory.



2012 ◽  
Vol 24 (6) ◽  
Author(s):  
Roland Matthes ◽  
Yoshinori Mizuno
Keyword(s):  


2010 ◽  
Vol 06 (07) ◽  
pp. 1473-1489 ◽  
Author(s):  
STEPHAN EHLEN

We construct a lifting from weakly holomorphic modular forms of weight 0 for SL 2(ℤ) with integral Fourier coefficients to meromorphic Hilbert modular forms of weight 0 for the full Hilbert modular group of a real quadratic number field with an infinite product expansion and a divisor given by a linear combination of twisted Hirzebruch–Zagier divisors. The construction uses the singular theta lifting by considering a suitable twist of a Siegel theta function. We generalize the work by Bruinier and Yang who showed the existence of the lifting for prime discriminants using a different approach.



Sign in / Sign up

Export Citation Format

Share Document