scholarly journals Motives for perfect PAC fields with pro-cyclic Galois group

2008 ◽  
Vol 73 (3) ◽  
pp. 1036-1050
Author(s):  
Immanuel Halupczok

AbstractDenef and Loeser denned a map from the Grothendieck ring of sets definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus enabling to apply any cohomological invariant to these sets. We generalize this to perfect, pseudo algebraically closed fields with pro-cyclic Galois group.In addition, we define some maps between different Grothendieck rings of definable sets which provide additional information, not contained in the associated motive. In particular we infer that the map of Denef-Loeser is not injective.

2002 ◽  
Vol 67 (3) ◽  
pp. 957-996 ◽  
Author(s):  
Zoé Chatzidakis

The study of pseudo-algebraically closed fields (henceforth called PAC) started with the work of J. Ax on finite and pseudo-finite fields [1]. He showed that the infinite models of the theory of finite fields are exactly the perfect PAC fields with absolute Galois group isomorphic to , and gave elementary invariants for their first order theory, thereby proving the decidability of the theory of finite fields. Ax's results were then extended to a larger class of PAC fields by M. Jarden and U. Kiehne [21], and Jarden [19]. The final word on theories of PAC fields was given by G. Cherlin, L. van den Dries and A. Macintyre [10], see also results by Ju. Ershov [13], [14]. Let K be a PAC field. Then the elementary theory of K is entirely determined by the following data:• The isomorphism type of the field of absolute numbers of K (the subfield of K of elements algebraic over the prime field).• The degree of imperfection of K.• The first-order theory, in a suitable ω-sorted language, of the inverse system of Galois groups al(L/K) where L runs over all finite Galois extensions of K.They also showed that the theory of PAC fields is undecidable, by showing that any graph can be encoded in the absolute Galois group of some PAC field. It turns out that the absolute Galois group controls much of the behaviour of the PAC fields. I will give below some examples illustrating this phenomenon.


2000 ◽  
Vol 6 (3) ◽  
pp. 311-330 ◽  
Author(s):  
Jan Krajíček ◽  
Thomas Scanlon

AbstractWe recall the notions of weak and strong Euler characteristics on a first order structure and make explicit the notion of a Grothendieck ring of a structure. We define partially ordered Euler characteristic and Grothendieck ring and give a characterization of structures that have non-trivial partially ordered Grothendieck ring. We give a generalization of counting functions to locally finite structures, and use the construction to show that the Grothendieck ring of the complex numbers contains as a subring the ring of integer polynomials in continuum many variables. We prove the existence of a universal strong Euler characteristic on a structure. We investigate the dependence of the Grothendieck ring on the theory of the structure and give a few counter-examples. Finally, we relate some open problems and independence results in bounded arithmetic to properties of particular Grothendieck rings.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750174 ◽  
Author(s):  
Alexey Galt

We answer the question of splitting of the normalizer of a maximal torus in orthogonal groups of type [Formula: see text] and [Formula: see text] over finite fields and algebraically closed fields of positive characteristic.


1980 ◽  
Vol 29 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Robert M. Guralnick ◽  
Michael D. Miller

AbstractLet K be an algebraically closed field of characteristic zero, and S a nonempty subset of K such that S Q = Ø and card S < card K, where Q is the field of rational numbers. By Zorn's Lemma, there exist subfields F of K which are maximal with respect to the property of being disjoint from S. This paper examines such subfields and investigates the Galois group Gal K/F along with the lattice of intermediate subfields.


2004 ◽  
Vol 271 (2) ◽  
pp. 627-637 ◽  
Author(s):  
Zoé Chatzidakis ◽  
Ehud Hrushovski

Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


Sign in / Sign up

Export Citation Format

Share Document