algebraically closed fields
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. 1-30
Author(s):  
PATRICK INGRAM

Abstract We study the dynamics of the map $f:\mathbb {A}^N\to \mathbb {A}^N$ defined by $$ \begin{align*} f(\mathbf{X})=A\mathbf{X}^d+\mathbf{b}, \end{align*} $$ for $A\in \operatorname {SL}_N$ , $\mathbf {b}\in \mathbb {A}^N$ , and $d\geq 2$ , a class which specializes to the unicritical polynomials when $N=1$ . In the case $k=\mathbb {C}$ we obtain lower bounds on the sum of Lyapunov exponents of f, and a statement which generalizes the compactness of the Mandelbrot set. Over $\overline {\mathbb {Q}}$ we obtain estimates on the critical height of f, and over algebraically closed fields we obtain some rigidity results for post-critically finite morphisms of this form.


Author(s):  
Mark Hunnell

Symmetric [Formula: see text]-varieties are a natural generalization of symmetric spaces to general fields [Formula: see text]. We study the action of minimal parabolic [Formula: see text]-subgroups on symmetric [Formula: see text]-varieties and define a map that embeds these orbits within the orbits corresponding to algebraically closed fields. We develop a condition for the surjectivity of this map in the case of [Formula: see text]-split groups that depends only on the dimension of a maximal [Formula: see text]-split torus contained within the fixed point group of the involution defining the symmetric [Formula: see text]-variety.


2020 ◽  
Vol 296 (3-4) ◽  
pp. 1645-1672 ◽  
Author(s):  
Ariyan Javanpeykar ◽  
Ljudmila Kamenova

Abstract Demailly’s conjecture, which is a consequence of the Green–Griffiths–Lang conjecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to provide evidence for Demailly’s conjecture by verifying several predictions it makes. We first define what an algebraically hyperbolic projective variety is, extending Demailly’s definition to (not necessarily smooth) projective varieties over an arbitrary algebraically closed field of characteristic zero, and we prove that this property is stable under extensions of algebraically closed fields. Furthermore, we show that the set of (not necessarily surjective) morphisms from a projective variety Y to a projective algebraically hyperbolic variety X that map a fixed closed subvariety of Y onto a fixed closed subvariety of X is finite. As an application, we obtain that $${{\,\mathrm{Aut}\,}}(X)$$ Aut ( X ) is finite and that every surjective endomorphism of X is an automorphism. Finally, we explore “weaker” notions of hyperbolicity related to boundedness of moduli spaces of maps, and verify similar predictions made by the Green–Griffiths–Lang conjecture on hyperbolic projective varieties.


2020 ◽  
Vol 8 ◽  
Author(s):  
Michael Bate ◽  
Benjamin Martin ◽  
Gerhard Röhrle

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$ , then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$ -conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.


Sign in / Sign up

Export Citation Format

Share Document