homological functor
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2015 ◽  
Vol 78 (1) ◽  
Author(s):  
Tan Yee Ting ◽  
Nor'ashiqin Mohd. Idrus ◽  
Rohaidah Masri ◽  
Wan Nor Farhana Wan Mohd Fauzi ◽  
Nor Haniza Sarmin ◽  
...  

Bieberbach groups are torsion free crystallographic groups. In this paper, our focus is given on the Bieberbach groups with symmetric point group of order six. The nonabelian tensor square of a group is a well known homological functor which can reveal the properties of a group. With the method developed for polycyclic groups, the nonabelian tensor square of one of the Bieberbach groups of dimension four with symmetric point group of order six is computed. The nonabelian tensor square of this group is found to be not abelian and its presentation is constructed.


2014 ◽  
Author(s):  
Tan Yee Ting ◽  
Nor'ashiqin Mohd. Idrus ◽  
Rohaidah Masri ◽  
Nor Haniza Sarmin ◽  
Hazzirah Izzati Mat Hassim

2014 ◽  
Author(s):  
Hazzirah Izzati Mat Hassim ◽  
Nor Haniza Sarmin ◽  
Nor Muhainiah Mohd Ali ◽  
Rohaidah Masri ◽  
Nor'ashiqin Mohd Idrus

2012 ◽  
Vol 110 (1) ◽  
pp. 59 ◽  
Author(s):  
Hvedri Inassaridze ◽  
Tamaz Kandelaki ◽  
Ralf Meyer

Given a thick subcategory of a triangulated category, we define a colocalisation and a natural long exact sequence that involves the original category and its localisation and colocalisation at the subcategory. Similarly, we construct a natural long exact sequence containing the canonical map between a homological functor and its total derived functor with respect to a thick subcategory.


Author(s):  
M.V. Bondarko

AbstractIn this paper we introduce a new notion ofweight structure (w)for a triangulated categoryC; this notion is an important natural counterpart of the notion oft-structure. It allows extending several results of the preceding paper [Bon09] to a large class of triangulated categories and functors.Theheartofwis an additive categoryHw⊂C. We prove that a weight structure yields Postnikov towers for anyX∈ObjC(whose 'factors'Xi∈ObjHw). For any (co)homological functorH:C→A(Ais abelian) such a tower yields aweight spectral sequenceT : H(Xi[j]) ⇒H(X[i + j]); Tis canonical and functorial inXstarting fromE2.Tspecializes to the usual (Deligne) weight spectral sequences for 'classical' realizations of Voevodsky's motivesDMeffgm(if we considerw = wChowwithHw=Choweff) and to Atiyah-Hirzebruch spectral sequences in topology.We prove that there often exists an exact conservative weight complex functorC→K(Hw). This is a generalization of the functort:DMeffgm→Kb(Choweff) constructed in [Bon09] (which is an extension of the weight complex of Gillet and Soulé). We prove thatK0(C) ≅K0(Hw) under certain restrictions.We also introduce the concept of adjacent structures: at-structure isadjacenttowif their negative parts coincide. This is the case for the Postnikovt-structure for the stable homotopy categorySH(of topological spectra) and a certain weight structure for it that corresponds to the cellular filtration. We also define a new (Chow)t-structuretChowforDMeff_⊃DMeffgmwhich is adjacent to the Chow weight structure. We haveHtChow≅ AddFun(Choweffop,Ab);tChowis related to unramified cohomology. Functors left adjoint to those that aret-exact with respect to somet-structures are weight-exact with respect to the corresponding adjacent weight structures, and vice versa. Adjacent structures identify two spectral sequences converging toC(X,Y): the one that comes from weight truncations ofXwith the one coming fromt-truncations ofY(forX,Y∈ObjC). Moreover, the philosophy of adjacent structures allows expressing torsion motivic cohomology of certain motives in terms of the étale cohomology of their 'submotives'. This is an extension of the calculation of E2of coniveau spectral sequences (by Bloch and Ogus).


Sign in / Sign up

Export Citation Format

Share Document