motivic cohomology
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Fabio Tanania

AbstractExtending (Smirnov and Vishik, Subtle Characteristic Classes, arXiv:1401.6661), we obtain a complete description of the motivic cohomology with $${{\,\mathrm{\mathbb {Z}}\,}}/2$$ Z / 2 -coefficients of the Nisnevich classifying space of the spin group $$Spin_n$$ S p i n n associated to the standard split quadratic form. This provides us with very simple relations among subtle Stiefel–Whitney classes in the motivic cohomology of Čech simplicial schemes associated to quadratic forms from $$I^3$$ I 3 , which are closely related to $$Spin_n$$ S p i n n -torsors over the point. These relations come from the action of the motivic Steenrod algebra on the second subtle Stiefel–Whitney class. Moreover, exploiting the relation between $$Spin_7$$ S p i n 7 and $$G_2$$ G 2 , we describe completely the motivic cohomology ring of the Nisnevich classifying space of $$G_2$$ G 2 . The result in topology was obtained by Quillen (Math Ann 194:197–212, 1971).


Astérisque ◽  
2021 ◽  
Vol 425 ◽  
Author(s):  
Tom BACHMANN ◽  
Marc HOYOIS

If $f : S' \to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal "norm" functor $f_\otimes : \mathcal{H}_{\bullet}(S')\to \mathcal{H}_{\bullet}(S)$, where $\mathcal{H}_\bullet(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite étale, we show that it stabilizes to a functor $f_\otimes : \mathcal{S}\mathcal{H}(S') \to \mathcal{S}\mathcal{H}(S)$, where $\mathcal{S}\mathcal{H}(S)$ is the $\mathbb{P}^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a  normed motivic spectrum, which is an enhancement of a motivic $E_\infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendieck's Galois theory, with Betti realization, and with Voevodsky's slice filtration; we prove that the norm functors categorify Rost's multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $H\mathbb{Z}$, the homotopy $K$-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $H\mathbb{Z}$ is a common refinement of Fulton and MacPherson's mutliplicative transfers on Chow groups and of Voevodsky's power operations in motivic cohomology.


Author(s):  
Frédéric Déglise ◽  
Jean Fasel

Abstract The main purpose of this article is to define a quadratic analogue of the Chern character, the so-called Borel character, that identifies rational higher Grothendieck-Witt groups with a sum of rational Milnor-Witt (MW)-motivic cohomologies and rational motivic cohomologies. We also discuss the notion of ternary laws due to Walter, a quadratic analogue of formal group laws, and compute what we call the additive ternary laws, associated with MW-motivic cohomology. Finally, we provide an application of the Borel character by showing that the Milnor-Witt K-theory of a field F embeds into suitable higher Grothendieck-Witt groups of F modulo explicit torsion.


Author(s):  
Burt Totaro

Abstract We determine the mod $p$ cohomological invariants for several affine group schemes $G$ in characteristic $p$. These are invariants of $G$-torsors with values in étale motivic cohomology, or equivalently in Kato’s version of Galois cohomology based on differential forms. In particular, we find the mod 2 cohomological invariants for the symmetric groups and the orthogonal groups in characteristic 2, which Serre computed in characteristic not 2. We also determine all operations on the mod $p$ étale motivic cohomology of fields, extending Vial’s computation of the operations on the mod $p$ Milnor K-theory of fields.


2021 ◽  
Vol 157 (1) ◽  
pp. 1-11
Author(s):  
Marc Hoyois

We prove the analog of the Morel–Voevodsky localization theorem for framed motivic spaces. We deduce that framed motivic spectra are equivalent to motivic spectra over arbitrary schemes, and we give a new construction of the motivic cohomology of arbitrary schemes.


Author(s):  
Alexander Vishik

Abstract In this article we introduce the local versions of the Voevodsky category of motives with $\mathbb{F} _p$ -coefficients over a field k, parametrized by finitely generated extensions of k. We introduce the so-called flexible fields, passage to which is conservative on motives. We demonstrate that, over flexible fields, the constructed local motivic categories are much simpler than the global one and more reminiscent of a topological counterpart. This provides handy ‘local’ invariants from which one can read motivic information. We compute the local motivic cohomology of a point for $p=2$ and study the local Chow motivic category. We introduce local Chow groups and conjecture that over flexible fields these should coincide with Chow groups modulo numerical equivalence with $\mathbb{F} _p$ -coefficients, which implies that local Chow motives coincide with numerical Chow motives. We prove this conjecture in various cases.


2020 ◽  
Vol 224 (4) ◽  
pp. 106199
Author(s):  
Mircea Voineagu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document